UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804+A2

EPD-VDP-20230400-IBO2-DE

12.03.2024 11.03.2029

Putzmörtel-Leichtputz Verband für Dämmsysteme, Putz und Mörtel e.V. (VDPM)

www.ibu-epd.com | https://epd-online.com

Institut Bauen und Umwelt e.V.

Florian Pronold

(Geschäftsführer/in des Instituts Bauen und Umwelt e.V.)

1. Allgemeine Angaben

Verband für Dämmsysteme, Putz und Mörtel Putzmörtel-Leichtputz e.V. (VDPM) Programmhalter Inhaber der Deklaration IBU - Institut Bauen und Umwelt e.V. Verband für Dämmsysteme, Putz und Mörtel e.V. Reinhardtstraße 14 Hegelplatz 1 10117 Berlin 10117 Berlin Deutschland Deutschland Deklarationsnummer **Deklariertes Produkt/deklarierte Einheit** EPD-VDP-20230400-IBO2-DE 1 kg Putzmörtel als mineralischer Werkmörtel, Produktgruppe Leichtputz mit einer Trockenrohdichte > 700 kg/m³ und < 1300 kg/m³. Diese Deklaration basiert auf den Produktkategorien-Regeln: Gültigkeitsbereich: Mineralische Werkmörtel, 01.08.2021 Bei diesem Dokument handelt es sich um eine Muster-EPD, bei der für die Berechnung der Ökobilanz das Produkt einer Gruppe ausgewählt wurde, (PCR geprüft und zugelassen durch den unabhängigen welches die höchsten Umweltlasten dieser Gruppe aufweist. Sie gilt Sachverständigenrat (SVR)) ausschließlich für Putzmörtel-Leichtputz als mineralische Werkmörtel für Verbandsmitglieder, diese können der Verbandswebsite entnommen Ausstellungsdatum werden. Bei den Zahlenangaben, zum Beispiel für bautechnische Daten oder Konzentrationsangaben, handelt es sich um durchschnittliche 12.03.2024 praxisübliche Werte für diese Produktgruppe. Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Gültig bis Ökobilanzdaten und Nachweise ist ausgeschlossen. 11.03.2029 Die EPD wurde nach den Vorgaben der EN 15804+A2 erstellt. Im Folgenden wird die Norm vereinfacht als EN 15804 bezeichnet. Verifizierung Die Europäische Norm EN 15804 dient als Kern-PCR Unabhängige Verifizierung der Deklaration und Angaben gemäß ISO 14025:2011 X intern extern Dipl.-Ing. Hans Peters (Vorstandsvorsitzende/r des Instituts Bauen und Umwelt e.V.)

Matthias Schulz,

(Unabhängige/-r Verifizierer/-in)

2. Produkt

2.1 Produktbeschreibung/Produktdefinition

Mineralische Werkmörtel sind Mörtel, deren Bestandteile im Werk und nicht auf der Baustelle gemischt werden. Sie werden in Abhängigkeit von der Art der Verwendung in die drei Werkmörtelarten Mauermörtel, Putzmörtel und Estrichmörtel unterteilt.

Mineralische Putzmörtel sind Gemische aus einem oder mehreren anorganischen Bindemitteln, Zuschlägen, Wasser und ggf. Zusatzstoffen bzw. Zusatzmitteln zur Herstellung von Außen- oder Innenputzen. Putzmörtel werden an Wänden und Decken je nach Erfordernis ein- oder mehrlagig aufgetragen. Neben der ästhetischen Gestaltung der Oberfläche dienen sie als Außenputze der Abhaltung der Witterungseinflüsse und als Innenputze der ebenflächigen Unterlage von Anstrichen und Tapeten. Bei Stahlbetondecken und -treppen dienen Putze auch dem Brandschutz, durch Zugabe poriger Zuschläge auch dem Wärmeschutz. Abhängig von den technischen Daten, den eingesetzten Grund- und Hilfsstoffen und der praktischen Anwendung werden Putzmörtel in die Produktgruppen Normalputz/Edelputz, Normalputz/Edelputz mit besonderen Eigenschaften, Leichtputz, Armierungsputz und Wärmedämmputz mit besonders hohem Anteil an Leichtzuschlägen

unterteilt. Für das Inverkehrbringen von Leichtputz in der EU/EFTA (mit Ausnahme der Schweiz) gilt die Verordnung (EU) Nr. 305/2011 (CPR). Leichtputz benötigt eine Leistungserklärung unter Berücksichtigung der DIN EN 998-1, Festlegungen für Mörtel im Mauerwerksbau - Teil 1: Putzmörtel und die CE-Kennzeichnung.

Für die Verwendung gelten die jeweiligen nationalen Bestimmungen.

2.2 Anwendung

Im Werk hergestellte Putzmörtel zur Verwendung als Unterputz bzw. Oberputz auf Wänden, Decken, Pfeilern und Trennwänden von Baukörpern, die den geltenden Normen entsprechen oder auf ähnlichen Putzgründen (z. B. bei Bestandsgebäuden).

Leichtputz zur Herstellung von Innen- und Außenputz mit einer reduzierten Trockenrohdichte.

2.3 Technische Daten

Bautechnische Daten

Bezeichnung	Wert	Einheit
Druckfestigkeit nach EN 1015-11	1,5 - 5	N/mm ²
Wärmeleitfähigkeit nach EN 1745 lambda10,dry,mat / P = 50 %	0,16 - 0,39	W/(mK)
Wärmeleitfähigkeit nach EN 1745 lambda10,dry,mat / P = 90 %	0,17 - 0,43	W/(mK)
Schallabsorption (ggf.)	1	%
Wasserdampfdurchlässigkeit nach EN 1015-19	15/20	-
Trockenrohdichte nach EN 1015-10 *	700- 1300	kg/m³
Kapillare Wasseraufnahme nach EN 1015-18 *	k.A.	kg/(m²min ^{0,5)}

^{*} Bei Sanierputzen nach *EN 998-1* gilt abweichend: Trockenrohdichte < 1400 kg/m³, kapillare Wasseraufnahme nach 24 h: mindestens 0,3 kg/m² (*WTA 2-9*).

Leistungswerte von Leichtputz entsprechend der Leistungserklärung in Bezug auf dessen Wesentliche Merkmale gemäß DIN EN 998-1, Festlegungen für Mörtel im Mauerwerksbau - Teil 1: Putzmörtel. Haftscherfestigkeit, Haftzugfestigkeit und Biegezugfestigkeit sind nicht relevant.

2.4 Lieferzustand

Mineralische Putzmörtel - Leichtputz werden als Werk-Trockenmörtel hergestellt und ausgeliefert. Werk-Trockenmörtel ist ein Mörtel, der aus Ausgangsstoffen besteht, die trocken im Werk abgefüllt.

zur Baustelle geliefert und dort nach Herstellerangaben und bedingungen mit der erforderlichen Wassermenge zu gebrauchsfertigem Mörtel gemischt werden.

Auslieferung als Sackware bis 35 kg pro Sack oder als Siloware bis 15 t pro Silo.

2.5 Grundstoffe/Hilfsstoffe

Mineralische Bauprodukte wie mineralische Werkmörtel und Putzmörtel bestehen überwiegend aus weit verbreiteten mineralischen Rohstoffen. Es besteht keine Ressourcenknappheit.

Bezeichnung	Wert	Einheit
Gesteinskörnung	≤ 65	M%
Feine Gesteinskörnung	≤ 18	M%
Leichte Gesteinskörnung	≤ 14	M%
Künstlicher Leichtzuschlag	≤ 1	M%
Zement	12-20	M%
Kalkhydrat [Ca(OH2]	≤ 6	M%

Die zulässige Schwankungsbreite der bautechnischen Daten wird durch unterschiedliche Mengenanteile der Grundstoffe ermöglicht. In jedem Fall ergibt die Zusammensetzung der Putzmörtel 100 M.-%.

Die folgenden Hilfsstoffe und Zusatzmittel können bei Bedarf eingesetzt werden:

• Wasserrückhaltemittel: < 0,15 M.-%

• Luftporenbildner: < 0,05 M.-%

Verdickungsmittel: < 0,06 M.-%

• Anorganische Pigmente: < 0,20 M.-%

• Fasern: < 0,25 M.-%

• Hydrophobierungsmittel: < 0,45 M.-%

Gesteinskörnung: Natursande als natürliche Rohstoffe, die neben den Hauptmineralien Quarz (SiO2) bzw. Calcit (CaCO3) natürliche Neben- und Spurenminerale enthalten.

Feine Gesteinskörnung: Kalksteinmehle, die bei der Aufbereitung der Natursande zur Herstellung der Gesteinskörnungen anfallen sowie Feinstsande.

Leichte Gesteinskörnung: Natürliche oder künstliche anorganische Leichtzuschläge zur Reduzierung der Trockenrohdichte. Natürliche Leichtzuschläge werden aus natürlichen Rohstoffen durch Zerkleinerung hergestellt (z. B. Bims, Vermiculit). Künstliche Leichtzuschläge werden durch Aufbereiten, Schmelzen und Blähen geeigneter natürlicher Rohstoffe (Blähton, Perlite) oder von sortiertem Altglas (Blähglas) hergestellt.

Künstlicher Leichtzuschlag: Durch Schäumung hergestelltes organisches, expandiertes Polystyrol (EPS) in Kugel- oder Partikelform (recycelt) zur Reduzierung der Trockenrohdichte **Zement:** Gem. *EN 197-1*; Zement dient als Bindemittel und wird vorwiegend aus Kalksteinmergel oder einem Gemisch aus Kalkstein und Ton hergestellt. Die natürlichen Rohstoffe werden gebrannt und anschließend gemahlen.

Kalkhydrat: Gem. *EN 459*; Weißkalkhydrat dient als Bindemittel und wird durch Brennen von natürlichem Kalkstein und anschließendes Löschen hergestellt.

Wasserrückhaltemittel: Zelluloseether, hergestellt aus Zellstoff, der einen zu raschen Wasserentzug aus dem Frischmörtel verhindert.

Luftporenbildner: Tenside zur Reduzierung der Oberflächenspannung von Wasser und zur Erzeugung von Luftporen. Diese vermindern die Frischmörtelrohdichte, verbessern die Verarbeitbarkeit und reduzieren die Schwindund Spannungsrissneigung.

Verdickungsmittel: Zellulose- oder Stärkeether, hergestellt aus Zellstoff oder nativer Stärke, verbessern die Standfestigkeit, wirken also verdickend, haben aber keine Wasser rückhaltende Wirkung.

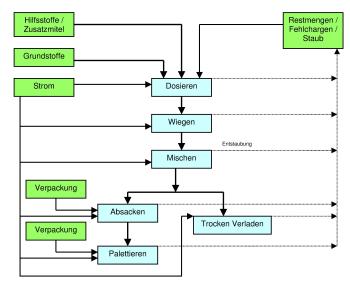
Anorganische Pigmente: Natürliche oder synthetische pulverförmige Farbmittel, die durch mechanische Behandlung der betreffenden mineralischen Stoffe wie z. B. Kreide, Ton usw. gewonnen werden.

Fasern: Fasern aus natürlichen oder synthetischen Polymeren (z. B. PAN, PP, PE usw.) oder anorganische Chemiefasern (z. B. Glasfasern) dienen der Aufnahme von Zugkräften im Festmörtel.

Hydrophobierungsmittel: Wasserlösliche Natriumoleate oder Zinkstearate zur Reduzierung der kapillaren Wasseraufnahme des Festmörtels.

Angaben zu besonders besorgniserregenden Stoffen:

- Das Produkt enthält Stoffe der ECHA-Liste vom 14.06.2023 oberhalb von 0,1 Massen-%: nein.
- Das Produkt enthält weitere CMR-Stoffe der Kategorie 1A oder 1B, die nicht auf der Kandidatenliste stehen, oberhalb von 0,1 Massen-% in mindestens einem Teilerzeugnis: nein.
- Dem vorliegenden Bauprodukt wurden Biozidprodukte zugesetzt oder es wurde mit Biozidprodukten behandelt (es handelt sich damit um eine behandelte Ware im Sinne der Biozidprodukteverordnung (EU) Nr. 528/2012): nein.


2.6 Herstellung

In der Graphik ist der Herstellungsprozess dargestellt. Mineralische Putzmörtel werden in Mischwerken in folgenden Arbeitsschritten hergestellt:

- Füllen der Vorrats- bzw. Wägebehälter,
- Förderung der Einsatzstoffe/des Mischgutes in den Mischer,
- · Mischen,
- · Förderung des Fertigproduktes,
- Verpackung,
- · Verladung des Fertigproduktes und Auslieferung.

Die Rohstoffe – Sand, Bindemittel, Leichtzuschläge, Hilfsstoffe, Zusatzmittel und -stoffe (siehe Grundstoffe) – werden im Herstellwerk in Silos gelagert. Aus den Silos werden die Rohstoffe entsprechend der jeweiligen Rezeptur gravimetrisch dosiert und intensiv miteinander vermischt.

Anschließend wird das Mischgut abgepackt und als Werk-Trockenmörtel trocken in Gebinden oder Silos ausgeliefert.

Graphik 1: Herstellungsprozess (grün: Input; blau: Einheitsprozess)

2.7 Umwelt und Gesundheit während der Herstellung

Stand der Technik ist die 100%ige Rückführung trockener Abfälle in die Produktion. Überall dort, wo bei der Herstellung im Werk Staub entstehen kann, wird dieser unter Beachtung der Arbeitsplatzgrenzwerte durch entsprechende Absaugungsanlagen einem zentralen Filtersystem zugeführt. Der darin abgeschiedene Feinststaub wird erneut dem Herstellungsprozess zugeführt.

Im Rahmen der eingeführten Qualitätsmanagementsysteme werden bei der automatisierten Prozessüberwachung evtl. auftretende Fehlchargen sofort erkannt und über entsprechende Rückstellwarensilos im Kreislauf geführt, d. h. in sehr geringen Mengenanteilen erneut dem Produktionsprozess zugeführt. Diese Vorgehensweise wird auch bei Produktrestmengen praktiziert.

die in Silos oder Säcken zum Herstellwerk in geringen Mengen zurück transportiert werden.

Prozessabluft wird bis weit unter die gesetzlichen Grenzwerte der Arbeitsplatzgrenzwerte (AWG-Werte) entstaubt.

Lärm:

Schallpegelmessungen haben gezeigt, dass alle inner- und außerhalb der Produktionsstätten ermittelten Werte aufgrund getroffener Schallschutzmaßnahmen weit unter den geforderten Werten der technischen Normen liegen.

2.8 Produktverarbeitung/Installation

Die Verarbeitung von mineralischen Putzmörteln erfolgt in der Regel maschinell. Sie werden entweder automatisch mit einem Trockenfördergerät aus dem Silo oder aber aus einzelnen Gebinden entnommen und mit einer Putzmaschine angemischt, gefördert und appliziert. Die Verwendung von Silomischpumpen ist möglich.

Die Putzmörtel werden anschließend vor Ort mit geeignetem Werkzeug egalisiert und ggf. strukturiert. Es gelten die Regelwerke der Berufsgenossenschaften und die jeweiligen Sicherheitsdatenblätter der Bauprodukte.

Mit den Bindemitteln Zement und Kalk in mineralischen Werkmörteln ist der mit Wasser angemischte Frischmörtel stark alkalisch. Bei längerem Kontakt können infolge der Alkalität ernste Hautschäden hervorgerufen werden. Deshalb ist jeder Kontakt mit den Augen und der Haut durch persönliche Schutzmaßnahmen zu vermeiden (*EG-Sicherheitsdatenblatt*). Es sind keine besonderen Maßnahmen zum Schutz der Umwelt zu treffen. Unkontrollierte Staubemissionen sind zu vermeiden. Mineralische Werkmörtel dürfen nicht in die Kanalisation, Oberflächenwasser oder Grundwasser gelangen.

2.9 Verpackung

Sackware aus einem Papiersack mit Kunststoffeinlage, Säcke auf Holzpaletten gelagert, Palette in Kunststofffolie eingeschweißt, Siloware in Stahlsilos.

Nachnutzungsmöglichkeiten für die Verpackung Sackware: ggf. Trennung. Nicht verschmutzte Polyethylen(PE)-Folien (auf sortenreine Erfassung ist zu achten) und Mehrwegpaletten aus Holz werden durch den Baustoffhandel zurückgenommen (Mehrwegpaletten gegen Rückvergütung im Pfandsystem) und von diesem an die Mörtelwerke zurückgegeben und in den Produktionsprozess zurückgeführt. Die Folien werden an die Folienhersteller zum Recyceln weitergeleitet.

2.10 Nutzungszustand

Die genannten Produkte sind bei normaler, dem Verwendungszweck der beschriebenen Produkte entsprechender Nutzung verrottungsfest und alterungsbeständig.

Putzmörtel aus mineralischen Werkmörteln sind vor Dauerbewitterung z. B. durch fachgerechten Anschluss des Fassadensockels zu schützen (*SAF*).

Der Risswiderstand von Putzmörtel aus mineralischen Werkmörteln kann durch eine Rissbewehrung/-armierung in der zugbelasteten Zone des Putzes erhöht werden (*DIN EN 13914-1, -2, DIN 18550-1, -2*).

2.11 Umwelt und Gesundheit während der Nutzung

Aufgrund der stabilen Calcium-Silikat-Hydrat-Bindung (CSH-Bindung) und dem nach Aushärtung am Untergrund erreichten festen Gefüge sind Emissionen nicht möglich. Bei normaler, dem Verwendungszweck der beschriebenen Produkte ent sprechender Nutzung sind keine

Gesundheitsbeeinträchtigungen möglich.

Gefährdungen für Wasser, Luft und Boden sind bei bestimmungsgemäßer Anwendung der Produkte nicht bekannt. Die natürliche ionisierende Strahlung der aus mineralischen Werkmörteln hergestellten Putzmörtel ist äußerst gering und gilt als gesundheitlich unbedenklich.

2.12 Referenz-Nutzungsdauer

Eine Referenz-Nutzungsdauer (RSL) nach ISO 15686-1, -2, -7 und -8 wird nicht deklariert. Bei bestimmungsgemäßem Gebrauch und fachgerechtem Einbau beträgt die Lebensdauer von Putzmörtel auf Wänden und Decken unter Verwendung mineralischer Werkmörtel erfahrungsgemäß 40 Jahre oder länger (BBSR).

2.13 Außergewöhnliche Einwirkungen

Brand

Brandverhaltensklasse A1

Zum Nachweis des Brandverhaltens gibt es gemäß den Regelwerken folgende Möglichkeiten:

Option 1: Leichtputz ist aufgrund der Kommissionsentscheidung 94/611/EG ohne Prüfung grundsätzlich in die Brandverhaltensklasse A 1 "Kein Beitrag zum Brand" nach EN 13501-1 einzustufen, da der Anteil fein verteilter organischer Bestandteile nicht größer als 1 % ist. **Option 2:** Da der Anteil fein verteilter organischer Bestandteile mehr als 1 % beträgt, wurde die Brandverhaltensklasse A1 über eine Prüfung nachgewiesen.

Unabhängig von der Produktgruppe hat sich gezeigt, dass sich Putzmörtel aus mineralischen Werkmörteln bei der 'heißen' Be mes-sung (statischer Nachweis mit den unter Brandtemperatureinwirkung reduzierten Tragfähigkeiten von Mauerwerk) günstig auf die erforderliche Mindestwanddicke auswirkt.

Zusätzliche Kennzeichnung erfolgt produktspezifisch auf Gebinde durch CE-Kennzeichen/Leistungserklärung.

Brandschutz

Bezeichnung	Wert
Baustoffklasse	A1
Brennendes Abtropfen	
Rauchgasentwicklung	

Wasser

Mineralische Werkmörtel als Putzmörtel sind strukturstabil und unterliegen keiner Formveränderung durch Wassereinwirkung und Trocknung.

Mechanische Zerstörung

Keine Angaben erforderlich.

2.14 Nachnutzungsphase

Die Lebensdauer eines mit Leichtputz verputzten Mauerwerks endet in der Regel mit der Lebensdauer des damit errichteten Gebäudes. Eine Wieder- und Weiterverwendung von verputztem Mauerwerk nach erfolgtem Rückbau ist nicht möglich.

Aus mineralischen Putzmörteln hergestellte Bauteile können in der Regel in einfacher Weise zurück gebaut werden. Bei Rückbau eines Gebäudes müssen diese nicht als Sondermüll behandelt werden; es ist jedoch auf einen möglichst sortenreinen Rückbau zu achten. Mineralische Putzmörtel können dem normalen Baustoffrecycling zugeführt werden. Eine Weiterverwertung erfolgt in der

Regel in Form rezyklierter Gesteinskörnungen im Hoch- und Tiefbau.

2.15 Entsorgung

Mörtel ist Bestandteil des mineralischen Bauschutts. Bauschutt wird mit einem Anteil von ca. 78 % recycelt (BBS).

Die Deponiefähigkeit von erhärteten mineralischen Putzmörteln gem. Deponieklasse I nach der Deponieverordnung *(DepV)* ist gewährleistet.

Der EAK-Abfallschlüssel nach Abfallverzeichnis-Verordnung (AVV) lautet 170101.

2.16 Weitere Informationen

Weitere Informationen im Internet unter folgender URL: www.vdpm.info.

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Diese Deklaration bezieht sich auf die Herstellung von einem Kilogramm typischer Putzmörtel der Produktgruppe Leichtputz. Es werden ausschließlich Trockenmörtel betrachtet.

Angabe der deklarierten Einheit

Bezeichnung	Wert	Einheit
Deklarierte Einheit	1	kg
Rohdichte	700 - 1300	kg/m ³
Ergiebigkeit	0,9-1,2	l/kg

Bei der Berechnung der Ökobilanz wird das Produkt der Produktgruppe Leichtputz ausgewählt, das die höchsten Umweltlasten dieser Gruppe aufweist.

3.2 Systemgrenze

Die Lebenszyklusanalyse der untersuchten Produkte umfasst die Produktion des Mörtels einschließlich der Rohstoffgewinnung und Energieträgerbereitstellung bis zum fertig verpackten Produkt (Modul A1–A3), den Einbau des Produktes inkl. Transport zur Baustelle (Modul A4–A5), die Nutzungsphase (Modul B1) sowie die Entsorgung des Mörtels (Modul C1–C4). Für Siloware werden die anteiligen Aufwendungen für den Transport und die Herstellung des Silos berücksichtigt. Gutschriften für die Verpackung einschließlich Energierückgewinnung (Modul D) gehen ebenfalls in die Ökobilanz ein.

3.3 Abschätzungen und Annahmen

Für die einzelnen Rezepturbestandteile der Formulierungen wurden diese, falls keine spezifischen *GaBi-*Prozesse zur Verfügung standen, nach Herstellerangaben oder Literatur abgeschätzt.

3.4 Abschneideregeln

Auf der Inputseite werden alle Stoffströme, die in das System eingehen und größer als 1 % der gesamten Masse sind oder mehr als 1 % zum Primärenergiebedarf beitragen, berücksichtigt. Die Gesamtsumme der vernachlässigten Input-Flüsse beträgt höchstens 5 % des Energie- und Masseeinsatzes.

Die Herstellung der zur Produktion der betrachteten Produkte benötigten Maschinen, Anlagen und sonstige Infrastruktur wurde in den Ökobilanzen nicht berücksichtigt.

3.5 Hintergrunddaten

Zur Modellierung des Lebenszyklus des deklarierten Produkts wurde die von der Sphera GmbH entwickelte Software LCA For Experts *LCA FE* (ehemals GaBi Software), Version 10.6.1.35 verwendet. Die zugrundeliegende Datenbank ist Sphera Managed LCA Content, CUP Version 2022.2.

3.6 Datengualität

Für diese Muster-EPD wurden repräsentative Produkte herangezogen; zur Berechnung der Ökobilanzergebnisse wurde das Produkt mit den größten Umweltwirkungen als repräsentativ für eine Gruppe deklariert. Für alle relevanten eingesetzten Vorprodukte lagen entsprechende Hintergrund--Datensätze in der *Sphera Software LCA FE* mit den zugehörigen Datenbanken MLC vor. Die Anforderungen an die Datenqualität und die

Hintergrunddaten entsprechen den Vorgaben der *PCR Teil A*. Der technologische Hintergrund der erfassten Daten gibt die physikalische Realität für die deklarierte Produktgruppe wieder. Die Datensätze sind vollständig und entsprechen den Systemgrenzen und den Kriterien für den Ausschluss von Inputs und Outputs.

Die letzte Revision der verwendeten Daten liegt weniger als 8 Jahre zurück.

3.7 Betrachtungszeitraum

Der Betrachtungszeitraum ist eine Jahresproduktion bezogen auf das Jahr 2023. Die Ökobilanzen wurden für den Bezugsraum Deutschland erstellt. Dies hat zur Folge, dass neben den Produktionsprozessen unter diesen Randbedingungen auch die für Deutschland relevanten Vorstufen, wie Strom- oder Energieträgerbereitstellung, verwendet wurden.

3.8 Geographische Repräsentativität

Land oder Region, in dem/r das deklarierte Produktsystem hergestellt und ggf. genutzt sowie am Lebensende behandelt wird: Deutschland

3.9 Allokation

Spezifische Informationen über die Allokationen innerhalb der Hintergrunddaten, sind in der Dokumentation der Datensätze der Sphera MLC (ehemals GaBi--Datensätze) enthalten. Die Zuordnung (Allokation) der Material- und Energieverbräuche für das deklarierte Produkt erfolgte durch die Mitgliedsfirmen des VDPM. Die zur Verfügung gestellten Daten sind verbandsinterne Kennzahlen, die nicht veröffentlicht wurden. Bei der Verbrennung der Verpackungen und Produktionsabfälle sowie Deponierung der Produktionsabfälle wird eine Multi-Input-Allokation mit einer Gutschrift für Strom und thermische Energie nach der Methode der einfachen Gutschrift eingesetzt. Die Gutschriften durch die Verpackungsentsorgung werden in Modul D gutgeschrieben.

3.10 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD-Daten nur möglich, wenn alle zu vergleichenden Datensätze nach *EN 15804* erstellt wurden und der Gebäudekontext bzw. die produktspezifischen Leistungsmerkmale berücksichtigt werden. Für die Modellierung wurde die Datenbank der *Sphera LCA FE* Sphera Managed LCA Content, CUP Version 2022.2 verwendet.

4. LCA: Szenarien und weitere technische Informationen

Charakteristische Produkteigenschaften biogener Kohlenstoff

Informationen zur Beschreibung des biogenen Kohlenstoffgehalts am Werkstor

Bezeichnung	Wert	Einheit
Biogener Kohlenstoff im Produkt	-	kg C
Biogener Kohlenstoff in der zugehörigen Verpackung	0,01	kg C

Notiz: 1 kg biogener Kohlenstoff ist äquivalent zu 44/12 kg CO_2 .

Die folgenden technischen Informationen sind Grundlage für die deklarierten Module oder können für die Entwicklung von spezifischen Szenarien im Kontext einer Gebäudebewertung genutzt werden, wenn Module nicht deklariert werden (MND).

Transport zu Baustelle (A4)

Bezeichnung	Wert	Einheit
Liter Treibstoff	0,0036	l/100km
Transport Distanz	100	km
Auslastung (einschließlich Leerfahrten)	50 - 85	%
Rohdichte der transportierten Produkte	700 - 1300	kg/m ³

Einbau ins Gebäude (A5)

Bezeichnung	Wert	Einheit
Hilfsstoff	-	kg
Wasserverbrauch	0,0003	m ³
Sonstige Ressourcen	-	kg
Stromverbrauch	0,00045	kWh
Sonstige Energieträger	-	MJ
Materialverlust	-	kg
Output-Stoffe als Folge der Abfallbehandlung auf der Baustelle	-	kg
Staub in die Luft	-	kg
VOC in die Luft	-	kg

Nutzung (B1)

Siehe auch Kap. 2.12: Referenz-Nutzungsdauer. Im Nutzungsstadium wird die CO2-Einbindung betrachtet, die durch die Karbonatisierung bedingt ist. Das bei der Entsäuerung von Kalkstein (CaCO3) während der Kalk- und Zementherstellung freigesetzte CO2 wird dabei während der Reaktion mit den Bindemitteln Kalk und Zement wieder eingebunden und führt zu einer Festigkeitssteigerung. In der Ökobilanz des Werkmörtels wurde in Anlehnung an die Berechnungsgrundlagen für Beton nach EN 16757 die maximale theoretische CO2--Aufnahme und das praktische Gesamthöchstpotenzial der CO2--Aufnahme für Putzmörtel – unter Berücksichtigung des Mörtelgefüges, der üblichen Putzdicken und der Exponiertheit der Oberflächen – mit einem Karbonatisierungsgrad von 100 % berechnet. Unter der

Annahme, dass die endgültige Anwendung des Putzmörtels für diese Muster-EPD ausreichend genau beschrieben ist bzw. die Parameter zur Berechnung des Karbonatisierungsgrades bestimmt werden können, muss das Vereinfachte Verfahren zur Bestimmung der Karbonatisierung nach EN 16757 nicht angewendet werden.

Ende des Lebenswegs (C1-C4)

Bezeichnung	Wert	Einheit
Getrennt gesammelt Abfalltyp Abfalltyp	-	kg
Als gemischter Bauabfall gesammelt	-	kg
Zur Wiederverwendung	-	kg
Zum Recycling	-	kg
Zur Energierückgewinnung	-	kg
Zur Deponierung	1,08	kg

Wiederverwendungs-, Rückgewinnungs- und Recyclingpotential (D), relevante Szenarioangaben

Bezeichnung	Wert	Einheit
Recycling Silo (Verpackung)	100	%
Verbrennung Holzpaletten (Verpackung)	100	%
Verbrennung Papier (Verpackung)	100	%
Verbrennung PE-Folie (Verpackung)	100	%

LCA: Ergebnisse

ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; MND = MODUL ODER INDIKATOR NICHT DEKLARIERT; MNR = MODUL NICHT RELEVANT)

Produktionsstadium		Stadium der Errichtung des Bauwerks			Nutzungsstadium						En	tsorgun	gsstadi		Gutschriften und Lasten außerhalb der Systemgrenze	
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung/Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau/Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
X	Х	Х	Х	Х	Х	MND	MNR	MNR	MNR	MND	MND	Х	Х	Х	Х	Х

ERGEBNISSE [DER ÖKOBIL	ANZ – UM	WELTAUSV	VIRKUNGEI	N nach EN	15804+A2: ·	1 kg Putzm	örtel-Leich	tputz	
Indikator	Einheit	A1-A3	A4	A5	B1	C1	C2	C3	C4	D
GWP-total	kg CO ₂ -Äq.	3,39E-01	1,12E-02	4,16E-02	-1,29E-01	2,89E-04	5,88E-03	0	1,56E-02	-1,63E-02
GWP-fossil	kg CO ₂ -Äq.	3,71E-01	1,11E-02	3,5E-03	-1,29E-01	2,89E-04	5,86E-03	0	1,61E-02	-1,61E-02
GWP-biogenic	kg CO ₂ -Äq.	-3,24E-02	4,58E-06	3,81E-02	0	-1,22E-06	2,41E-06	0	-4,76E-04	-1,15E-04
GWP-luluc	kg CO ₂ -Äq.	1,32E-04	4,15E-05	1,52E-07	0	1,12E-06	2,18E-05	0	2,97E-05	-2,8E-06
ODP	kg CFC11-Äq.	1,04E-12	1,59E-15	6,21E-15	0	5,97E-17	8,36E-16	0	3,82E-14	-1,6E-13
AP	mol H+-Äq.	6,05E-04	1,07E-05	8,04E-06	0	3,89E-06	5,62E-06	0	1,14E-04	-1,65E-05
EP-freshwater	kg P-Äq.	1,38E-06	2,3E-08	4,84E-09	0	5,81E-10	1,21E-08	0	2,73E-08	-3,31E-08
EP-marine	kg N-Äq.	2,07E-04	3,59E-06	2,27E-06	0	1,77E-06	1,89E-06	0	2,92E-05	-5,89E-06
EP-terrestrial	mol N-Äq.	2,42E-03	4,29E-05	3,8E-05	0	1,95E-05	2,26E-05	0	3,2E-04	-6,29E-05
POCP	kg NMVOC- Äq.	5,02E-04	9,35E-06	5,92E-06	0	5,3E-06	4,93E-06	0	8,86E-05	-1,55E-05
ADPE	kg Sb-Äq.	3,9E-07	1,15E-09	1,52E-10	0	2,92E-11	6,05E-10	0	1,66E-09	-9,43E-09
ADPF	MJ	2,67E+00	1,48E-01	1,13E-02	0	3,87E-03	7,79E-02	0	2,11E-01	-2,32E-01
WDP	m ³ Welt-Äq. entzogen	3,93E-03	4,38E-05	4,69E-03	0	1,25E-06	2,31E-05	0	1,76E-03	-1,97E-04

GWP = Globales Erwärmungspotenzial; ODP = Abbaupotenzial der stratosphärischen Ozonschicht; AP = Versauerungspotenzial von Boden und Wasser; EP = Eutrophierungspotenzial; POCP = Bildungspotenzial für troposphärisches Ozon; ADPE = Potenzial für die Verknappung von abiotischen Ressourcen – nicht fossile Ressourcen (ADP – Stoffe); ADPF = Potenzial für die Verknappung abiotischer Ressourcen – fossile Brennstoffe (ADP – fossile Energieträger); WDP = Wasser-Entzugspotenzial (Benutzer)

ERGEBNISSE DER ÖKOBILANZ – INDIKATOREN ZUR BESCHREIBUNG DES RESSOURCENEINSATZES nach EN 15804+A2: 1 kg Putzmörtel-Leichtputz

Indikator	Einheit	A1-A3	A4	A5	B1	C1	C2	C3	C4	D
PERE	MJ	6,81E-01	8,78E-03	3,3E-01	0	2,54E-04	4,63E-03	0	3,17E-02	-7,49E-02
PERM	MJ	2,86E-01	0	-2,86E-01	0	0	0	0	0	0
PERT	MJ	9,67E-01	8,78E-03	4,4E-02	0	2,54E-04	4,63E-03	0	3,17E-02	-7,49E-02
PENRE	MJ	2,63E+00	1,48E-01	5,09E-02	0	3,87E-03	7,8E-02	0	2,11E-01	-2,33E-01
PENRM	MJ	3,7E-02	0	-3,7E-02	0	0	0	0	0	0
PENRT	MJ	2,67E+00	1,48E-01	1,39E-02	0	3,87E-03	7,8E-02	0	2,11E-01	-2,33E-01
SM	kg	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0
FW	m ³	5,29E-04	7,66E-06	4,01E-04	0	1,97E-07	4,03E-06	0	5,34E-05	-3,12E-05

PERE = Erneuerbare Primärenergie als Energieträger; PERM = Erneuerbare Primärenergie zur stofflichen Nutzung; PERT = Total erneuerbare Primärenergie; PENRE = Nicht-erneuerbare Primärenergie als Energieträger; PENRM = Nicht-erneuerbare Primärenergie zur stofflichen Nutzung; PENRT = Total nicht erneuerbare Primärenergie; SM = Einsatz von Sekundärstoffen; RSF = Erneuerbare Sekundärbrennstoffe; NRSF = Nicht-erneuerbare Sekundärbrennstoffe; FW = Nettoeinsatz von Süßwasserressourcen

ERGEBNISSE DER ÖKOBILANZ –ABFALLKATEGORIEN UND OUTPUTFLÜSSE nach EN 15804+A2:

r kg Futzinortei-Leichtputz										
Indikator	Einheit	A1-A3	A4	A5	B1	C1	C2	C3	C4	D
HWD	kg	7,94E-10	6,84E-13	1,15E-12	0	1,69E-14	3,6E-13	0	1,08E-11	-4,11E-11
NHWD	kg	8,56E-03	2,34E-05	4,11E-04	0	6,3E-07	1,23E-05	0	1,08E+00	-1,39E-04
RWD	kg	6,4E-05	1,49E-07	4,22E-07	0	4,86E-09	7,84E-08	0	2,31E-06	-8,27E-06
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0

EEE	MJ	0	0	5,22E-02	0	0	0	0	0	0
EET	MJ	0	0	1,22E-01	0	0	0	0	0	0

HWD = Gefährlicher Abfall zur Deponie; NHWD = Entsorgter nicht gefährlicher Abfall; RWD = Entsorgter radioaktiver Abfall; CRU = Komponenten für die Wiederverwendung; MFR = Stoffe zum Recycling; MER = Stoffe für die Energierückgewinnung; EEE = Exportierte Energie – elektrisch; EET = Exportierte Energie – thermisch

ERGEBNISSE DER ÖKOBILANZ – zusätzliche Wirkungskategorien nach EN 15804+A2-optional: 1 kg Putzmörtel-Leichtputz

Indikator	Einheit	A1-A3	A4	A5	B1	C1	C2	C3	C4	D
PM	Krankheitsfälle	1,59E-08	6,3E-11	4,43E-11	0	2,08E-10	3,32E-11	0	1,4E-09	-1,28E-10
IR	kBq U235-Äq.	6,31E-03	1,45E-05	3,94E-05	0	4,94E-07	7,62E-06	0	2,52E-04	-8,2E-04
ETP-fw	CTUe	2,95E+00	1,17E-01	5,62E-03	0	2,96E-03	6,17E-02	0	1,18E-01	-3,83E-02
HTP-c	CTUh	5,34E-11	2,33E-12	3,08E-13	0	5,93E-14	1,23E-12	0	1,8E-11	-3,06E-12
HTP-nc	CTUh	5,42E-09	1,16E-10	1,32E-11	0	4,47E-12	6,12E-11	0	1,99E-09	-1,17E-10
SQP	SQP	6,4E+00	4,64E-02	3,08E-03	0	1,16E-03	2,45E-02	0	4,58E-02	-5,08E-02

PM = Potenzielles Auftreten von Krankheiten aufgrund von Feinstaubemissionen; IR = Potenzielle Wirkung durch Exposition des Menschen mit U235; ETP-fw = Potenzielle Toxizitätsvergleichseinheit für Ökosysteme; HTP-c = Potenzielle Toxizitätsvergleichseinheit für den Menschen (kanzerogene Wirkung); HTP-nc = Potenzielle Toxizitätsvergleichseinheit für den Menschen (nicht kanzerogene Wirkung); SQP = Potenzieller Bodenqualitätsindex

Einschränkungshinweis 1 - gilt für den Indikator "Potenzielle Wirkung durch Exposition des Menschen mit U235".

Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird eben-falls nicht von diesem Indikator gemessen.

Einschränkungshinweis 2 – gilt für die Indikatoren: "Potenzial für die Verknappung abiotischer Ressourcen - nicht fossile Ressourcen", "Potenzial für die Verknappung abiotischer Ressourcen - fossile Brennstoffe", "Wasser-Entzugspotenzial (Benutzer)", "Potenzielle Toxizitätsvergleichseinheit für Ökosysteme", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - kanzerogene Wirkung", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - nicht kanzerogene Wirkung", "Potenzieller Bodenqualitätsindex".

Die Ergebnisse dieses Umweltwirkungsindikators müssen mit Bedacht angewendet werden, da die Unsicherheiten bei diesen Ergebnissen hoch sind oder da es mit dem Indikator nur begrenzte Erfahrungen gibt.

6. LCA: Interpretation

Die Ökobilanzergebnisse werden in allen Wirkungskategorien signifikant durch die Lebenszyklusphasen

Rohstoffbereitstellung und Transporte (A1–A2), Herstellung (insbesondere Herstellung der Verpackung in A3) und die Deponierung (C4) dominiert. Zusammen genommen ca. 85–100 % (bis auf WDP) der Umweltlasten kommen aus den o.g. Lebenszyklusphasen.

Die Summe aus eingesetzten Rohstoffen sowie deren Transporte tragen (bis auf WDP) mit etwa 80–100 % zu den Umweltlasten bei – hauptsächlich bedingt durch den Einsatz von Blähglas, Zement, Kalkhydrat und Kalksteinmehl (zusammen > 95 % innerhalb A1). Die Transporte der Rohstoffe spielen eine untergeordnete Rolle (< 10 % aus Summe A1-A2). Die Transporte der Produkte zur Baustelle (A4) spielen eine untergeordnete Rolle (< 10 %).

Das WDP in A5 ist vor allem verursacht durch die thermische Verwertung des Verpackungsmaterials.

Die Deponierung am Ende des Lebenszyklus (C4) trägt mit ca. 0–15 % zu den Umweltlasten bei.

In der Nutzungsphase wird durch Karbonatisierung (= CO2-Einbindung) etwas mehr als 30 % des verursachten GWP wieder eingebunden.

7. Nachweise

7.1 Auslaugung:

Für ein Szenario der mit Feuchtigkeit belasteten Bauteile gibt es derzeit weder europäische noch nationale Bewertungskriterien bzw. Emissionsszenarien. Ein prüftechnischer Nachweis analog zum Innenraum-Bereich (AgBB-Schema) ist somit nicht möglich.

7.2 VOC-Emissionen:

Messstelle: Fraunhofer-Institut für Bauphysik (IBP), Institutsteil Holzkirchen, D-83626 Valley

Messverfahren: Bestimmung der Emissionen von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen nach *ISO 16000-9* und *-11* in einer 0,2-m³-Prüfkammer (t0 = 7 Tage) und Bewertung gemäß *AgBB*-Schema. Messung unterschiedlicher Produkte für Innenund Außenanwendung.

Prüfbericht: Ergebnisprotokoll 005/2008/281 vom 20.03.2008

Ergebnisse:

enbezeichnung	Leichtputz				
B Ergebnisüberblick	3 Tage [μg/m³]	28 Tage [μg/m³]			
	Messwerte	Messwerte			
TVOC (C6-C16)	< 400	< 100			
Σ SVOC (C16-C22)	< 5	< 2			
R (dimensionslos)	< 0,5	< 0,1			
Σ VOC o. NIK	< 50	< 20			
Σ Kanzerogene	< 2	< 1			
VVOC (< C6)	< 80	< 40			
	B Ergebnisüberblick TVOC (C6-C16) Σ SVOC (C16-C22) R (dimensionslos) Σ VOC o. NIK Σ Kanzerogene	B Ergebnisüberblick 3 Tage [μg/m³] Messwerte 400 Σ SVOC (C16-C22) < 5			

7.3 Radioaktivität:

Messstelle: Fraunhofer-Institut für Bauphysik (IBP), Institutsteil Holzkirchen, D-83626 Valley

Messverfahren: Prüfung des Gehaltes an den radioaktiven

Nukliden 226Ra, 232Th und 40K durch Messung der Aktivitäts-Konzentrationen C_{Nuklid} mittels Alpha-Spektrometrie (Verzögerte-Koinzidenz-Methode mittels LSC) bzw. mittels Gamma-Spektrometrie

Prüfbericht: Untersuchungsbericht vom 12.12.2006 zur Radioaktivität von Bauprodukten

Ergebnis: Die aus den messtechnisch ermittelten Aktivitäts-

Konzentrationen C_{Nuklid} errechneten Aktivitäts-Konzentrations-Indices I lagen bei allen genannten Produkten unter dem empfohlenen Grenzwert von I = 2. Auch der vorgeschlagene Grenzwert I = 0,5 für Bauprodukte, die in großen Mengen verbaut werden, wurde in keinem Fall erreicht. Bei Korrelation von I mit dem Dosis-Kriterium gemäß Richtlinie *Strahlenschutz* 112 der Europäischen Kommission blieben alle genannten Produkte unterhalb des empfohlenen Grenzwertes der jährlichen Strahlungsdosis von 0,3 mSv/a.

8. Literaturhinweise

PCR Teil A

Produktkategorie-Regeln für gebäudebezogene Produkte und Dienstleistungen, Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Projektbericht nach EN 15804+A2:2019. Version 1.3, 2022-08. Institut Bauen und Umwelt e.V.

PCR: Mineralische Werkmörtel

Produktkategorie-Regeln für gebäudebezogene Produkte und Dienstleistungen, Teil B: Anforderungen an die EPD für Mineralische Werkmörtel, Institut Bauen und Umwelt e. V., Version 3, 2023-07.

Allgemeine Anleitung zum IBU-EPD-Programm

Die Erstellung von Umwelt-Produktdeklarationen. Version 2.1, 2022-10. Institut Bauen und Umwelt e.V. (Hrsg.) unter https://ibu-epd.com/ (Juni 2023).

Sphera LCA FE (ehemals GaBi)

Sphera LCA For Experts (ehemals GaBi Software System) mit den zugehörigen Datenbanken Managed LCA Content MLC (ehemals GaBi Datenbanken), Sphera Solutions GmbH. CUP Version: 2022.2. University of Stuttgart, Leinfelden Echterdingen, MLC Datendokumentation unter https://sphera.com/product-sustainability-gabi-data-search/ (Juni 2023).

Normen

DIN 4108-4

DIN 4108-4:2020-11, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte.

DIN 18550-1

DIN 18550-1:2018-01, Planung, Zubereitung und Ausführung von Außen- und Innenputzen - Teil 1: Ergänzende Festlegungen zu DIN EN 13914-1:2016-09 für Außenputze.

DIN 18550-1/A1

DIN 18550-1/A1:2022-11, Planung, Zubereitung und Ausführung von Außen- und Innenputzen - Teil 1: Ergänzende Festlegungen zu DIN EN 13914-1:2016-09 für Außenputze; Änderung A1.

DIN 18550-2

DIN 18550-2:2018-01, Planung, Zubereitung und Ausführung von Außen- und Innenputzen - Teil 2: Ergänzende Festlegungen zu DIN EN 13914-2:2016-09 für Innenputze.

DIN 18550-2/A1

DIN 18550-2/A1:2022-11, Planung, Zubereitung und Ausführung von Außen- und Innenputzen - Teil 2: Ergänzende Festlegungen zu DIN EN 13914-2:2016-09 für Innenputze; Änderung A1.

EN 197-1

DIN EN 197-1:2011-11, Zement - Teil 1: Zusammensetzung,

Anforderungen und Konformitätskriterien von Normalzement.

EN 450-1

DIN EN 450-1:2012-10, Flugasche für Beton - Teil 1: Definition, Anforderungen und Konformitätskriterien.

EN 459-1

DIN EN 459-1:2015-07, Baukalk - Teil 1: Begriffe, Anforderungen und Konformitätskriterien.

EN 998-1

DIN EN 998-1:2017-02, Festlegungen für Mörtel im Mauerwerksbau - Teil 1: Putzmörtel.

EN 1015-10

DIN EN 1015-10:2007-05, Prüfverfahren für Mörtel für Mauerwerk - Teil 10: Bestimmung der Trockenrohdichte von Festmörtel.

EN 1015-11

DIN EN 1015-11:2020-01, Prüfverfahren für Mörtel für Mauerwerk - Teil 11: Bestimmung der Biegezug- und Druckfestigkeit von Festmörtel.

EN 1015-18

DIN EN 1015-18:2003-03, Prüfverfahren für Mörtel für Mauerwerk - Teil 18: Bestimmung der kapillaren Wasseraufnahme von erhärtetem Mörtel (Festmörtel).

EN 1015-19

DIN EN 1015-19:2005-01, Prüfverfahren für Mörtel für Mauerwerk - Teil 19: Bestimmung der Wasserdampfdurchlässigkeit von Festmörteln aus Putzmörteln.

EN 1052-3

DIN EN 1052-3:2007-06, Prüfverfahren für Mauerwerk - Teil 3: Bestimmung der Anfangsscherfestigkeit (Haftscherfestigkeit).

EN 1745

DIN EN 1745:2020-10 Mauerwerk und Mauerwerksprodukte - Verfahren zur Bestimmung von wärmeschutztechnischen Eigenschaften.

EN 12664

DIN EN 12664: 2001-05, Wärmetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des Wärmedurchlasswiderstandes nach dem Verfahren mit dem Plattengerät und dem Wärmestrommessplatten-Gerät -- Trockene und feuchte Produkte mit mittlerem und niedrigem Wärmedurchlasswiderstand.

EN 13501-1

DIN EN 13501-1:2019-05, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten.

EN 13914-1

DIN EN 13914-1:2016-09, Planung, Zubereitung und Ausführung von Außen- und Innenputzen - Teil 1: Außenputze.

EN 13914-2

DIN EN 13914-2:2016-09, Planung, Zubereitung und Ausführung von Innen- und Außenputzen - Teil 2: Innenputze.

EN 13914-2 Berichtigung 1

DIN EN 13914-2 Berichtigung 1:2017-05, Planung, Zubereitung und Ausführung von Innen- und Außenputzen - Teil 2: Innenputze; Berichtigung zu DIN EN 13914-2:2016-09.

EN 15804

DIN EN 15804:2022-03, Nachhaltigkeit von Bauwerken -Umweltproduktdeklarationen - Grundregeln für die Produktkategorie Bauprodukte.

FN 15942

DIN EN 15942:2022-04, Nachhaltigkeit von Bauwerken - Umweltproduktdeklarationen - Kommunikationsformate zwischen Unternehmen.

EN 16516

DIN EN 16516:2020-10, Bauprodukte: Bewertung der Freisetzung von gefährlichen Stoffen - Bestimmung von Emissionen in die Innenraumluft.

EN 16757

DIN EN 16757:2023-03, Nachhaltigkeit von Bauwerken - Umweltproduktdeklarationen - Produktkategorieregeln für Beton und Betonelemente.

ISO 14025

DIN EN ISO 14025:2011-10, Umweltkennzeichnungen und -- deklarationen -- Typ III Umweltdeklarationen -- Grundsätze und Verfahren.

ISO 14040

DIN EN ISO 14040:2021-02, Umweltmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen.

ISO 14044

DIN EN ISO 14044:2021-02, Umweltmanagement - Ökobilanz - Anforderungen und Anleitungen.

ISO 15686-1

ISO 15686-1:2011-05, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 1: Allgemeine Grundlagen und Rahmenbedingungen.

ISO 15686-2

ISO 15686-2:2012-05, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 2: Verfahren zur Voraussage der Lebensdauer.

ISO 15686-3

ISO 15686-3:2002-08, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 3: Fremd- und Eigenüberwachung.

ISO 15686-4

ISO 15686-4:2014-01, Hochbau - Planung der Lebensdauer - Teil 4: Planung der Lebensdauer unter Verwendung von Gebäudeinformationen.

ISO 15686-5

ISO 15686-5:2017-07, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 5: Kostenberechnung für die Gesamtlebensdauer.

ISO 15686-7

ISO 15686-7:2017-04, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 7: Leistungsbewertung für die Rückmeldung von Daten über die Nutzungsdauer aus der Praxis.

ISO 15686-8

ISO 15686-8:2008-06, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 8: Referenznutzungsdauer und Bestimmung der Nutzungsdauer.

ISO/TS 15686-9

ISO/TS 15686-9:2008-12, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 9: Leitfaden für die Bewertung von Lebensdauerdaten.

ISO 15686-10

ISO 15686-10:2010-06, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 10: Wann die funktionale Leistungsfähigkeit zu bewerten ist.

ISO/TR 15686-11

ISO/TR 15686-11:2014-08, Hochbau und Bauwerke - Planung der Lebensdauer - Teil 11: Terminologie.

ISO 16000-9

DIN EN ISO 16000-9:2008-04,

Innenraumluftverunreinigungen - Teil 9: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Emissionsprüfkammer-Verfahren.

ISO 16000-11

DIN EN ISO 16000-11:2006-06,

Innenraumluftverunreinigungen - Teil 11: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Probenahme, Lagerung der Proben und Vorbereitung der Prüfstücke.

Weitere Literatur

AqBB

Ausschuss zur gesundheitlichen Bewertung von Bauprodukten (AgBB): Anforderungen an die Innenraumluftqualität in Gebäuden: Gesundheitliche Bewertung der Emissionen von flüchtigen organischen Verbindungen (VVOC, VOC und SVOC) aus Bauprodukten. Stand Juni 2021.

AVV

Abfallverzeichnis-Verordnung vom 10. Dezember 2001 (BGBI. I S. 3379), die zuletzt durch Artikel 1 der Verordnung vom 30. Juni 2020 (BGBI. I S. 1533) geändert worden ist.

BBS

Bundesverband Baustoffe – Steine und Erden (bbs) e.V. u.a. (Hrsg.): Mineralische Bauabfälle - Monitoring 2018. Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2018. Berlin, 2021.

BBSR

BBSR - Bundesinstitut für Bau-, Stadt- und Raumforschung: Nutzungsdauern von Bauteilen für Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen (BNB), Stand 24.02.2017.

DepV

Deponieverordnung vom 27. April 2009 (BGBI. I S. 900), die zuletzt durch Artikel 3 der Verordnung vom 9. Juli 2021 (BGBI. I S. 2598) geändert worden ist.

EAK-Abfallschlüssel

Verordnung zur Einführung des Europäischen Abfallkatalogs (EAK-Verordnung - EAKV) vom 13. September 1996 (BGBI. I S. 1428) BGBI. III/FNA 2129–27–2–6, geändert durch Art. 8 Verordnung zur Umsetzung des Europäischen Abfallverzeichnisses vom 10. 12. 2001 (BGBI. I S. 3379).

ECHA-Liste

European Chemicals Agency (ECHA): Liste der für eine Zulassung in Frage kommenden besonders besorgniserregenden Stoffe (en: Substances of Very High Concern – SVHC), veröffentlicht gemäß Artikel 59 Absatz 10 der REACH-Verordnung (14.06.2023).

EG-Sicherheitsdatenblatt

Verfügbar auf der Internetseite der jeweiligen Mitgliedsfirma des VDPM.

Industrieverband Werktrockenmörtel e.V. (WTM)

Verbandsinterne Studie 'Ökologische Aspekte von Werktrockenmörtel', Stand Januar 2000 (unveröffentlicht).

Kommissionsentscheidung 94/611/EG

Entscheidung der Kommission vom 9. September 1994 zur Durchführung von Artikel 20 der Richtlinie 89/106/EWG über Bauprodukte (94/611/EG).

Ökobilanz

Vergleichende Ökobilanz: Mauerwerk mit mineralischem Mörtel und Mauerwerk mit PU-Schaum-Verklebung nach ISO 14040 und ISO 14044; durchgeführt im Auftrag des VDPM (ehemals IWM); IBP Fraunhofer Institut für Bauphysik, Stuttgart/Holzkirchen 2008.

SAF

SAF - Fachverband der Stuckateure für Ausbau und Fassade Baden-Württemberg e.V. (Hrsg.): Richtlinie "Fassadensockelputz/Außenanlagen", 3. Auflage 2013.

Strahlenschutz 112

Europäische Kommission: Strahlenschutz 112 "Strahlenschutzgrundsätze zur natürlichen Radioaktivität von Baumaterialien", Luxemburg: Amt für Veröffentlichungen der Europäischen Union, 2000.

Herausgeber

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Deutschland +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programmhalter

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Deutschland +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Ersteller der Ökobilanz

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Deutschland +49 711 341817-0 info@sphera.com www.sphera.com

Inhaber der Deklaration

Verband für Dämmsysteme, Putz und Mörtel e.V. Reinhardtstraße 14 10117 Berlin Deutschland +49 (0)30 403670750 info@vdpm.info www.vdpm.info