Environmental Product Declaration

In accordance with EN 15804:2012+A2:2019 for:

Resilient flooring tile

from

Jiangsu BBL Home Technology Co., Ltd.

Programme: The International EPD® System, <u>www.environdec.com</u>

Programme operator: EPD International AB

EPD registration number: S-P-11120
Publication date: 2023-10-23
Valid until: 2028-10-23

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD® System
Address:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
Website:	www.environdec.com
E-mail:	info@environdec.com

Accountabilities for PCR, LCA and independent, third-party verification
Product Category Rules (PCR)
CEN standard EN 15804 serves as the Core Product Category Rules (PCR)
Product Category Rules (PCR): PCR 2019:14 Construction products, version 1.2.5
PCR review was conducted by: IVL Swedish Environmental Research Institute Moderator: Martin Erlandsson, Martin.erlandsson@ivl.se
Life Cycle Assessment (LCA)
LCA accountability: Zhou Jiangling, Xu Fangyan (Ecovane Environmental)
Third-party verification
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:
⊠ EPD verification by individual verifier
Third-party verifier: Sunil Kumar, SIPL Pvt Ltd (sunil@sipl-sustainability.com)
Approved by: The International EPD® System
OR
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:
□ EPD verification by accredited certification body
Third-party verification: <name, organisation=""> is an approved certification body accountable for the third-party verification</name,>
The certification body is accredited by: <name &="" accreditation="" applicable="" body="" number,="" of="" where=""></name>
OR

Independent third-party verification of the declaration and data, according to ISO 14025:2006 via:
☐ EPD verification by EPD Process Certification*
Internal auditor: <name, organisation=""></name,>
Third-party verification: <name, organisation=""> is an approved certification body accountable for third-party verification</name,>
Third-party verifier is accredited by: <name &="" accreditation="" applicable="" body="" number,="" of="" where=""></name>
*For EPD Process Certification, an accredited certification body certifies and reviews the management process and verifies EPDs published on a regular basis. For details about third-party verification procedure of the EPDs, see GPI v.4, Section 7.5.
Procedure for follow-up of data during EPD validity involves third party verifier:
⊠ Yes □ No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

Company information

Owner of the EPD:

Jiangsu BBL Home Technology Co., Ltd.

Address: NO.10 Changhong East Rd, Henglin Town, Wujin District, Changzhou City, JS213101,

China.

Website: https://www.bblflooring.com

Email: field@bblfloor.com

Description of the organization:

Established in 1991, Jiangsu BBL home Technology Co., Ltd. (also known as BBL) is a professional manufacturer of Vinyl Flooring, Laminate Flooring as well as Engineered wood flooring. BBL has more than 31 years of experience in construction materials and has a good reputation in this field.

BBL have implemented a strict and complete quality control system, which ensures that each product can best meet customers' quality requirements. Besides, all the products have been strictly inspected before shipment. We have attained ISO9001:2008 certification for our management system and we are now using Lean Manufacturing System to improve our efficiency of internal management.

In 2010, BBL set up "Product Research and Developing Department". Jointly with Nanjing Forestry University, BBL has established "BBL Flooring Engineering Technology Research and Developing Center". BBL will insist on its business concept, which is "Following the market need, based on professional marketing, guaranteed by the creditable service" to build BBL as a professional brand and providing satisfactory products and service to clients all over the world.

Name and location of production site(s):

Jiangsu BBL Home Technology Co., Ltd.

Address: NO.10 Changhong East Rd, Henglin Town, Wujin District, Changzhou City, JS213101, China.

Product information

Product name:

BBL resilient flooring tile, including LVT (Luxury Vinyl Tile), LVT click (Luxury Vinyl Tile click), PP (Polypropylene), SPC (Stone Plastic Composite), EPC (Engineered Plastic Composite) and WPC (Wood Plastic Composite)

Product identification:

Table1 Product technical specifications

Product	Thickness	Length	width
LVT	2.0-4.0mm	200-2000mm	100-2000mm
LVT click	3.2-5.0mm	200-2000mm	100-2000mm
PP	3.2-6.5mm	200-2000mm	100-2000mm
SPC	3.2-7.0mm	200-2000mm	100-2000mm
EPC	5.0-7.0mm	200-2000mm	100-2000mm
WPC	5.0-12mm	200-2000mm	100-2000mm

Manufacturing process:

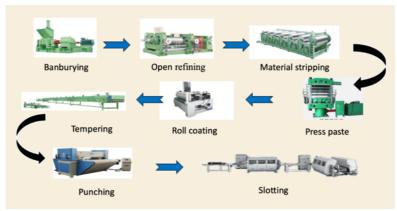


Figure 1 BBL WPC resilient flooring tile manufacturing process

Product description:

BBL's resilient flooring series has a total of six series of products, including LVT (Luxury Vinyl Tile), LVT click (Luxury Vinyl Tile click), PP (Polypropylene), SPC (Stone Plastic Composite), EPC (Engineered Plastic Composite) and WPC (Wood Plastic Composite). The various series of flooring product shares the similar manufacturing processes and ingrediencies. According to the LCA analysis, WPC flooring product has the highest level of impact among the six series, hence in this EPD, WPC flooring tile, with various combinations of thickness, length and width of the tile, is selected as representative model. Among the WPC products, WPC with a thickness of 5.0 mm is the general specifications for each category, which can be abbreviated as WPC (5.0). A detailed flooring product specification is depicted below in Table 1 above.

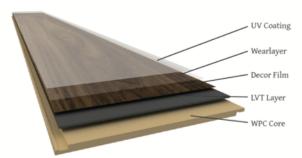


Figure 2 Structure of WPC floor

BBL's flooring tiles are 100% water proof, and they use best plasticizer DOTP and 100% virgin material, which have passed certification of Floorscore, Green Guard Gold and Eurofin's Indoor Air Quality Comfort.

UN CPC code:

36910 Floor coverings of plastics, in rolls or in the form of tiles; wall or ceiling coverings of plastics.

Geographical scope:

Global

LCA information

Declared unit:

The declared unit is 1 m² of WPC resilient flooring tile. To convert area to mass, multiply the volume by the density of the substance. The conversion factor of volume to mass in the LCA study is 1600kg/m³ since the thickness is 5 mm.

Time representativeness:

The study used primary data collected from January 2022 to January 2023.

Database(s) and LCA software used:

In this LCA study, specific data related to materials or energy flows within the production was calculated and submitted by BBL, generic data for certain processes were sourced from Ecoinvent 3.8 in SimaPro 9.5.

The data quality requirements for this study were as follows:

- Existing LCI data were, at most, 10 years old. Newly collected LCI data were current or up to 3 years old:
- The LCI data related to the geographical locations where the processes took place, e.g. electricity and transportation data from China, disposal data from Europe were utilized;
- The scenarios represented the average technologies at the time of data collection.

System diagram:

DESCRIPTION OF THR SYSTEM BOUNDARY (X = INCLUDED IN THE LCA; ND = MODULE NOT DECLARED

Pro	duct St	tage	Constr Proces Stage		Use St	Use Stage End of Life Stage						Recourse Recovery Stage					
TRaw Material	& Transport	⊗ Manufacturing	P Transport	Assembly/Install	es B1	™ Maintenance	ER Repair	B Replacement	G Refurbishment	9 Operational Energy Use	ا کا	Demolition	C2	ე Waste Processing	Disposal		C Reuse-Recovery- Recycling- potential
Х	Х	Χ	Χ	Χ	ND	Χ	ND	ND	ND	ND	ND	Х	Х	Χ	Χ	J	Χ

Description of system boundaries:

This study of flooring product includes life cycle information from cradle-to-grave and module D. The product stage for product includes extraction and processing of raw materials, transportation to the factory and manufacturing processes with packaging and etc. The construction process stage includes transportation of flooring product to the building site from the factory and the installation phase. The use stage includes maintenance of flooring product. And the end of life stage includes deconstruction, transportation of waste products to final disposition site, disposal and etc.

Over through the life cycle stages of products, all energy and material inputs have been traced back to the extraction of resources, emissions from the whole system have been quantified and waste management scenarios have also been included.

For recycling and disposal process at the end of life stage, to be conservative, the benefits of recycling and recovery is out of boundary of the product system. However, the potential benefits from recycling and energy recovery beyond the system boundary of the studied product system have been declared and reported in module D in this study.

Excluded lifecycle stages:

The following steps/stages were not included in the system boundary due to the reason that the elements below are considered irrelevant or not within the boundary to the LCA study of the product system:

- production and disposal of the infrastructure and capital equipment (buildings, machines, transport media, roads, etc.) and their maintenance
- Storage phases and sales of the flooring products
- Flooring product losses due to abnormal damage such as natural disaster or fire accident. These losses would mostly be accidental.
- Handling operations at the distribution center and retail outlet (cut off, see 2.4 cut off rules)
- Secondary and transit packaging (cut off, see cut off rules)
- Transport from distribution warehouse to retail outlet and from retail outlet to consumer household or commercial center (cut off, see cut off rules)
- The excluded aspects were not included in the system boundary of LCA as the impacts from
 the excluded aspects were considered irrelevant to the flooring product system under
 examination, or the impact was deemed minor to the system under study, more of which will be
 elaborated in cut off rules.

Assumption and limitations:

For certain aspects of bamboo flooring studied, the following key assumptions were made as follows:

- For missing background data, substitution of missing data using similar background data approach was taken to shorten the gap.
- Transport assumptions were made where it was not possible to obtain the specific data, for
 instance from distribution center to outlet and from outlet to consumer. When this occurred, it was
 clearly stated in the report;
- Electricity consumption data was not obtained for certain processes so assumptions were made for these. When this occurred, it was clearly stated in the report;
- A modification of the global background database was done by replacing all the energy data, especially electricity production data, by Chinese energy data, and the study used the modified background data to get better indication of the potential environmental impact results by using more localized dataset of energy supply.

Allocation:

Allocation refers to partitioning of input or output flows of a process or a product system between the product systems under study and one or more other product systems. In this report, in plant recycling for substrate production is considered and assumed as a close loop, meaning all of the environment impact from recycling of substrate scraps, and flooring scraps from cutting and edging treatment and benefit of using recycled material to avoid waste treatment for substrate production are allocated to the process of flooring production.

For recycling and disposal process at the end of life stage, as described above, the benefits of recycling and recovery is out of boundary of the product system, and will not be allocated to flooring product.

For process-related allocations, a distinction is made between multi-input and multi-output processes.

Multi-input processes

For data sets in this study, the allocation of the inputs from coupled processes is generally carried out via the mass. For literature data, the source is generally referred to. In this study one allocation occurs on BBL flooring production, in allocating the input and output, i.e. energy within the production site such as electricity, natural gas and etc. and some other raw material such as diesel, emission such as off gas among the various series of flooring products, allocation is done via both mass and size of the specific series of product produced on a yearly average. The principle for choosing the mass and size is based on the linear relationship of the product output to the environmental impacts.

Multi-output processes

In this study, there is no other by products produced from the production line, hence there is quite little occasion that required allocation for multi-output processes. One allocation occurs on the environmental emissions allocation, especially in the area of waste treatment. In the end of life stage, the allocation within the disposal scenario follows mass allocation, which applies to waste treatment process inventory adopted from Ecoinvent data.

Cut-off rules:

It is estimated that the largest omitted mass flow in the product life cycle is associated with production stage, but it does not exceed 1% of total mass flow in the worst cases scenario. It is estimated that environmental relevance over impact categories during whole product life cycle does not exceed 1% in the worst cases scenario.

Cut-off criteria were applied to capital equipment production and maintenance. It was assumed that the impacts associated with these aspects were sufficiently small enough to fall below cut-off when it is scaled down to the declared unit.

Material and energy flows known to have the potential to cause significant emissions into air and water or soil related to the environmental indicators of this study will be included in the assessment. So far according to review of the Material Safety Data Sheet (MSDS) and relevant physical, chemical and other information of the flows listed in table above, no significant negative emission to the environment from above listed flows is identified.

Flow name	Process stage	Mass %	Total Mass %
Waste filter cotton	Production process waste gas treatment	8.5 E-05, <<1%	8.5 E-05, <<1%
Waste residue	Production process	7 E-05, <<1%	1.55 E-04, <<1%
Waste rag	Production process	1 E-04, <<1%	2.55 E-04, <<1%
Waste heat conducting oil	Production process	2.8 E-04, <<1%	5.35 E-04, <<1%

Table 2 Cut off flows

Electricity source:

In this report, the electricity is based on State Grid Corporation of China (SGCC) inventory, the inventory is prepared by Ecovane LCA consultant, taking into account the power plant efficiency, emission factor, power grid loss and also traced back to raw energy materials such as coal and natural gas.

The electricity inventory is based on the year of 2020 for Chinese electricity generation (China Energy Statistics). In 2020, the content of power supply is 68.5% thermal power, 17.4% hydropower, 4.7% nuclear power, and 6.0% wind power. And coal is the main fuel for thermal power, accounting for about 90%, followed by gas for 8%, and the rest is fuel oil and other fuels. The transmission of electricity in all cases is taken from the power station via a high voltage electricity grid to low voltage electricity suitable

for domestic use, with a loss factor of 7.52% of the electricity produced at the power station, and a loss of 6.15% by the electricity consumption at the power plants.

Life cycle assessment scenarios:

According to BBL, installation for flooring product is a relatively simple task and only a few tools like cutting instruments (knife, scissors) are necessary for installation. In this LCA study we assume the floor is flat and the energy or material required to do floor preparation is omitted. As tools are reusable, the production and disposal stage of tools is also omitted. Approximately 10% of the total material is cut off as waste, according to estimation by BBL. For the simplicity of the study, we assume that the scrape of the installation is treated following the normal end of life disposal scenarios used in the target market.

The disposal of packaging materials is also included in the installation stage. According to BBL, the target market of flooring products including North America, Europe and the Asian-Pacific region. The disposal of packaging materials will adopt a rough country and region weighted average disposal mode following literature review. For packaging disposal in North America, the waste disposal scenario from US is set default, and for packaging disposal in the Asian-Pacific region, the waste disposal scenario from Australia is set default, as US and Australia are the main markets in North America and the Asia Pacific region according to BBL. The table below demonstrates the packaging disposal in the target market.

Landfill Incineration Material Recycling Nation/region Ratio Rate Rate Rate type 81.50% 9.30% 9.20% paper EU1 30% wood 32.00% 39.00% 29% 37.60% 23.80% 38.60% plastic US² 68.00% 26% 6.00% paper **North America** 50% 17.00% 67% 16.00% wood The rest market plastic 8.50% 76% 15.50% Australia³ paper 55.00% 45% 0% the Asia Pacific 20% 80.00% 20% 0% wood The rest region market 87% 0% 13% plastic

Table 3 Packaging disposal in the target market

Source:

Very little effort is required in order to use BBL flooring product, hence in the usage stage the focus is put on maintaining the floor tile in terms of protecting its integrity and functionality. In normal condition, routine vacuuming, cleaning and surface conditioning is required. The energy and detergent consumption data is based on estimation from BBL and study of average product's usage data, the table below demonstrates the amount used in this report.

Table 4 Inputs in maintenance stage

	. asiapateasia									
		Amount	Units	Scenario						
Ele	ctricity	0.052	kWh/m2/yr.	Based on weekly vacuuming and 0.001kWh/m2 square assumption						
Det	ergent	0.052	kg/m2/yr.	Based on weekly mopping and 0.001kg/m2 detergent usage assumption;						

¹ Eurostat, Recovery and recycling rates for packaging. 2020. (Last updated March 2023)

² Advancing Sustainable Materials Management: 2018 Fact Sheet. (Released December 2020)

³ National Waste Report 2022. (Released December 2022)

According to BBL, most of flooring products are used in Europe, North America, and the Asian-Pacific region. The disposal of the used flooring product will adopt a region average disposal mode following literature review. End of life disposal treatment process (C4) from ecoinvent will be used in this LCA study. For the waste scenario, 100km of road transportation (C2) from home to waste treatment site is assumed. According to BBL, the tile can be manually removed from the floor, hence input and output is omitted in deconstruction (C1), and waste processing (C3) stage of the tile life cycle. Table below shows the disposal in the target market.

Table 5 Disposal in the target market

		•			
Nation/reg	jion	Ratio	Recycling Rate	Landfill Rate	Incineration Rate
EU ¹		30%	49.2%	19%	30.2%
North America	US ²	50%	18.5%	65.5%	16%
	The rest market	00,0		221272	
the Asia Pacific region	Australia ³	20%	80%	20%	0%
and region	The rest market] =370	2370		270

Source:

Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results):

	Pro	duct sta	age	prod	ruction cess ige	Use stage End					nd of li	ife sta	ge	Resource recovery stage			
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A 1	A2	A3	A4	A5	В1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Modules declared	Х	Х	Х	Х	Х	ND	Х	ND	ND	ND	ND	ND	Х	Х	Х	х	Х
Geography	CN	CN	CN	GLO	GLO	ND	GLO	ND	ND	ND	ND	ND	GLO	GLO	GLO	GLO	GLO
Specific data used		>90%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – products		27.40%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites		0%		-	-	-	-	-	-	-	-	-	-	-	-	-	-

Content information

¹ Eurostat, Recovery and recycling rates for packaging. 2020. (Last updated March 2023)

² Advancing Sustainable Materials Management: 2018 Fact Sheet. (Released December 2020)

³ National Waste Report 2022. (Released December 2022)

Product components	EPC (5.0)	LVT (2.5)	LVT click (4.2)	PP (4.2)	SPC (5.0)	WPC (5.0)
Stone powder	65.60%	70.10%	70.10%	64.50%	67.40%	62.30%
PVC	23.30%	16.30%	16.30%	-	20.50%	28.50%
Other additive	0.90%	-	-	2.00%	0.60%	0.90%
Wearlayer	8.30%	7.50%	7.50%	-	10.00%	5.10%
Wearlayer-PVC free	-	-	-	9.20%	-	-
Stabilizer	1.30%	1.30%	1.30%	0.00%	1.10%	0.20%
UV coating	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%
Carbon black	0.20%	0.20%	0.20%	0.10%	0.10%	0.20%
Lubricant	0.30%	-	-	0.20%	0.50%	0.80%
Film	0.10%	0.20%	0.20%	-	0.10%	0.10%
Film-PVC free	-	-	-	0.20%	-	-
DOTP	-	9.20%	9.20%	-	-	2.00%
PP	-	-	-	23.60%	-	-
ixpe	-	-	-	-	-	0.50%

Packaging materials	Weight, kg/DU	Weight biogenic carbon, kg C/DU
Packaging box	0.146	0.051
Tray	0.095	0.047
Wrapping film	0.019	0
Packing belt	0.01	0

Results of the environmental performance indicator

BBL's resilient flooring series has a total of six series of products, including LVT (Luxury Vinyl Tile), LVT click (Luxury Vinyl Tile click), PP (Polypropylene), SPC (Stone Plastic Composite), EPC (Engineered

Plastic Composite) and WPC (Wood Plastic Composite), among which the environmental impact of WPC flooring is the largest. Therefore, the environmental impact value of WPC is selected as representative product for disclosure in this EPD report.

Mandatory impact category indicators according to EN 15804

_			Resul	ts pei	declar	ed unit	:			
Impact category	Unit	A1-A3	A4	A 5	B2	C1	C2	C3	C4	D
GWP - total	kg CO ₂	1.24E+01	2.48E+00	1.88E- 01	4.19E+00	0.00E+00	1.02E+00	0.00E+00	1.39E+00	- 3.17E+00
GWP - fossil	kg CO ₂ eq	1.26E+01	2.48E+00	1.73E- 02	3.53E+00	0.00E+00	1.02E+00	0.00E+00	1.03E+00	3.36E+00
GWP - biogenic	kg CO ₂ eq	-3.60E- 01	4.79E-04	1.71E- 01	- 3.34E+00	0.00E+00	3.14E-04	0.00E+00	3.60E-01	1.89E-01
GWP - luluc	kg CO ₂ eq	1.52E-01	1.54E-03	2.12E- 06	4.00E+00	0.00E+00	1.12E-04	0.00E+00	1.17E-04	-3.17E-03
ODP	kg CFC11 eq	4.88E-06	5.21E-07	4.05E- 10	4.34E-07	0.00E+00	2.22E-07	0.00E+00	1.84E-08	-1.36E-06
AP	mol H+ eq	5.90E-02	5.75E-02	2.33E- 05	3.64E-02	0.00E+00	6.46E-03	0.00E+00	1.15E-03	-1.54E-02
EP-freshwater	kg P eq	4.34E-03	1.15E-04	5.35E- 07	2.40E-02	0.00E+00	1.83E-05	0.00E+00	1.20E-04	-1.22E-03
EP- marine	kg N eq	1.28E-02	1.41E-02	1.27E- 04	3.38E-02	0.00E+00	2.60E-03	0.00E+00	6.93E-03	-2.99E-03
EP-terrestrial	mol N eq	1.22E-01	1.56E-01	7.97E- 05	1.20E-01	0.00E+00	2.85E-02	0.00E+00	3.97E-03	-2.93E-02
POCP	kg NMVOC eq	3.70E-02	4.13E-02	4.24E- 05	2.05E-02	0.00E+00	1.00E-02	0.00E+00	1.07E-03	-9.50E-03
ADP- minerals&metals*	kg Sb eq	1.25E-04	4.20E-06	7.40E- 09	5.81E-05	0.00E+00	8.91E-07	0.00E+00	4.23E-07	-4.53E-05
ADP-fossil*	MJ	2.20E+02	3.42E+01	3.62E- 02	3.92E+01	0.00E+00	1.39E+01	0.00E+00	1.74E+00	- 6.93E+01
WDP*	m³ depriv.	5.26E+00	8.56E-02	1.92E- 03	1.36E+01	0.00E+00	1.25E-02	0.00E+00	1.03E-01	1.66E+00
Acronyms	GWP-lu stratosp Eutroph Eutroph Eutroph ADP-mi	luc = Globa heric ozon ication pot ication pot ication pote nerals&met il resources	al Warming e layer; A ential, frac ential, frac ential, Accu als = Abioti	Potentia P = Aciention of the content of the conten	I land use a dification p nutrients re nutrients r Exceedance on potential	and land us otential, Adeaching freeching mee; POCP =	e change; ccumulated eshwater end: Formation estimates it resources.	ODP = Dep Exceedan nd compar compartm potential o es; ADP-fos	ng Potentia pletion poter ce; EP-fres tment; EP- ent; EP-ter f troposphe ssil = Abiotic ation-weigh	ntial of the shwater = marine = restrial = ric ozone; depletion

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator. The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks

Additional mandatory and voluntary impact category indicators

	Results per declared unit										
Indicato r	Uni t	A1-A3	A4	A 5	B2	C1	C2	C3	C4	D	
GWP- GHG	kg CO ₂ eq.	1.28E+0 1	2.48E+0 0	1.73E -02	7.53E+0 0	0.00E+0 0	1.02E+0 0	0.00E+0 0	1.03E+0 0	3.36E+0 0	

Resource use indicators

Results per declared unit													
Impact category	Unit	A1-A3	A4	A 5	В2	C1	C2	С3	C4	D			
PENRE	MJ	2.43E+02	3.33E+01	3.67E-02	4.67E+01	0.00E+00	1.34E+01	0.00E+00	1.79E+00	-			
PERE	MJ	1.95E+01	2.88E-01	1.26E-03	1.25E+02	0.00E+00	5.44E-02	0.00E+00	7.29E-02	-			
PENRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-			
PERM	MJ	1.14E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-			
PENRT	MJ	2.43E+02	3.33E+01	3.67E-02	4.67E+01	0.00E+00	1.34E+01	0.00E+00	1.79E+00	-			
PERT	MJ	2.06E+01	2.88E-01	1.26E-03	1.25E+02	0.00E+00	5.44E-02	0.00E+00	7.29E-02	-			
FW	m ³	9.05E+00	4.53E-01	1.94E-03	4.55E+00	0.00E+00	6.22E-02	0.00E+00	1.06E-01	-			
SM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-			
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-			
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-			
Acronyms			resources renewable primary energources usources; Planter; SM:	PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; PERT = Total use of renewable primary energy resources; PERT = Total use of renewable primary energy resources; PW = Use of net fresh water; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels									

Waste indicators

Results per declared unit												
Impact category	Uni t	A1-A3	A4	A 5	B2	C1	C2	C3	C4	D		
Hazardous waste disposed	kg	3.00E-03	0.00E+0 0	-								
Non- hazardous waste disposed	kg	4.50E-01	0.00E+0 0	1.07E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	-		

Radioactiv e waste	kg	0.00E+0	_							
disposed	ŭ	Ü	Ü	U	Ü	Ü	Ü	Ü	Ü	

Output flow indicators

	Results per declared unit											
Impact category	Unit	A1-A3	A4	A 5	B2	C1	C2	C3	C4	D		
Component s for re-use	kg	0.00E+0 0	-									
Material for recycling	kg	0.00E+0 0	0.00E+0 0	4.59E-01	0.00E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	3.20E+0 0	-		
Materials for energy recovery	kg	0.00E+0 0	0.00E+0 0	1.70E-01	0.00E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	1.40E+0 0	-		
Exported electrical energy	MJ, per energ y carrier	0.00E+0 0	0.00E+0 0	1.41E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	0.00E+0 0	9.52E+0 0	-		
Exported thermal energy	MJ, per energ y carrier	0.00E+0 0	-									

References

General Programme Instructions of the International EPD® System. Version 4.0.

PCR 2019:14. CONSTRUCTION PRODUCTS. Version 1.2.5

EN 15804:2012+A2:2019/AC:2021 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

ISO 14025:2006 Environmental labels and declaration – Type III environmental declarations – Principles and procedures.

ISO 14040:2006 /Amd 1:2020 Environmental management- Life cycle assessment - Principles and framework.

ISO 14044:2006/Amd 2:2020 Environmental management - Life cycle assessment - Requirements and guideline.

Contact information

EPD Owner

Jiangsu BBL Home Technology Co., Ltd.

Email: field@bblfloor.com

Website: https://www.bblflooring.com

LCA and EPD Practitioner

Ecovane Environmental Co., Ltd

Email: Zhou Jiangling (zhouj@1mi1.cn)

Website: www.1mi1.org

