

SHI-PRODUKTPASS

Produkte finden - Gebäude zertifizieren

SHI-Produktpass-Nr.:

15102-10-1001

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

Warengruppe: Fußbodenheizung - Flächenheizungssysteme

PYD-Thermosysteme GmbH Am Pfaffenkogel 11 83483 Bischofswiesen

Produktqualitäten:

Helmut Köttner Wissenschaftlicher Leiter Freiburg, den 27.08.2025

Kottner

Produkt.

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP 15102-10-1001 Hohlkammer-Systemplatte

Inhalt

Qualitatssiegel Nachhaltiges Gebaude	1
EU-Taxonomie	2
■ DGNB Neubau 2023	3
■ DGNB Neubau 2018	5
■ BNB-BN Neubau V2015	6
■ BREEAM DE Neubau 2018	7
Produktsiegel	8
Rechtliche Hinweise	9
Technisches Datenblatt/Anhänge	9

Wir sind stolz darauf, dass die SHI-Datenbank, die erste und einzige Datenbank für Bauprodukte ist, die ihre umfassenden Prozesse sowie die Aktualität regelmäßig von dem unabhängigen Prüfunternehmen SGS-TÜV Saar überprüfen

Produkt

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

Qualitätssiegel Nachhaltiges Gebäude

Das Qualitätssiegel Nachhaltiges Gebäude, entwickelt durch das Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen (BMWSB), legt Anforderungen an die ökologische, soziokulturelle und ökonomische Qualität von Gebäuden fest. Das Sentinel Holding Institut prüft Bauprodukte gemäß den QNG-Anforderungen für eine Zertifizierung und vergibt das QNG-ready Siegel. Das Einhalten des QNG-Standards ist Voraussetzung für den KfW-Förderkredit. Für bestimmte Produktgruppen hat das QNG derzeit keine spezifischen Anforderungen definiert. Diese Produkte sind als nicht bewertungsrelevant eingestuft, können jedoch in QNG-Projekten genutzt werden.

Kriterium	Pos. / Bauproduktgruppe	Betrachtete Stoffe	QNG Freigabe
3.1.3 Schadstoffvermeidung in Baumaterialien	nicht zutreffend	nicht zutreffend	QNG-ready nicht bewertungsrelevant

Produkt:

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

Die EU-Taxonomie klassifiziert wirtschaftliche Aktivitäten und Produkte nach ihren Umweltauswirkungen. Auf der Produktebene gibt es gemäß der EU-Verordnung klare Anforderungen zu Formaldehyd und flüchtigen organischen Verbindungen (VOC). Die Sentinel Holding Institut GmbH kennzeichnet qualifizierte Produkte, die diesen Standard erfüllen.

Kriterium	Produkttyp	Betrachtete Stoffe	Bewertung
DNSH - Vermeidung und Verminderung der Umweltverschmutzung		Stoffe nach Anlage C	EU-Taxonomie konform
Nachweis: Herstellererkläru	ng vom Juni 2024		

www.sentinel-holding.eu

Produkt

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

DGNB Neubau 2023

Das DGNB-System (Deutsche Gesellschaft für Nachhaltiges Bauen) bewertet die Nachhaltigkeit von Gebäuden verschiedener Art. Das System ist sowohl anwendbar für private und gewerbliche Großprojekte als auch für kleinere Wohngebäude. Die Version 2023 setzt hohe Standards für ökologische, ökonomische, soziokulturelle und funktionale Aspekte während des gesamten Lebenszyklus eines Gebäudes.

Kriterium	Pos. / Relevante Bauteile / Bau- Materialien / Flächen	Betrachtete Stoffe / Aspekte	Qualitätsstufe
ENV 1.2 Risiken für die lokale Umwelt, 03.05.2024 (3. Auflage)	nicht zutreffend		nicht bewertungsrelevant

Kriterium	Bewertung
ENV 1.1 Klimaschutz und Energie (*)	Kann Gesamtbewertung positiv beeinflussen
Nachweis: Planungsunterlage	

Kriterium	Bewertung
ECO 1.1 Gebäudebezogene Kosten im Lebenszyklus (*)	Kann Gesamtbewertung positiv beeinflussen
Nachweis: Planungsunterlage	

Kriterium	Bewertung
SOC 1.1 Thermischer Komfort (*)	Kann Gesamtbewertung positiv beeinflussen
Nachweis: Planungsunterlage	

Kriterium	Pos. / Relevante Bauteile / Bau- Materialien / Flächen	Betrachtete Stoffe / Aspekte	Qualitätsstufe
ENV 1.2 Risiken für die lokale Umwelt, 29.05.2025 (4. Auflage)	nicht zutreffend		nicht bewertungsrelevant

Produkt

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

DGNB Neubau 2018

Das DGNB-System (Deutsche Gesellschaft für Nachhaltiges Bauen) bewertet die Nachhaltigkeit von Gebäuden verschiedener Art. Das System ist sowohl anwendbar für private und gewerbliche Großprojekte als auch für kleinere Wohngebäude.

Kriterium	Pos. / Relevante Bauteile / Bau- Materialien / Flächen	Betrachtete Stoffe / Aspekte	Qualitätsstufe
ENV 1.2 Risiken für die lokale Umwelt	nicht zutreffend	nicht zutreffend	nicht bewertungsrelevant

www.sentinel-holding.eu

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

BNB-BN Neubau V2015

Das Bewertungssystem Nachhaltiges Bauen ist ein Instrument zur Bewertung von Büro- und Verwaltungsgebäuden, Unterrichtsgebäuden, Laborgebäuden sowie Außenanlagen in Deutschland. Das BNB wurde vom damaligen Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) entwickelt und unterliegt heute dem Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen.

Kriterium	Pos. / Bauprodukttyp	Betrachtete Schadstoffgruppe	Qualitätsniveau
1.1.6 Risiken für die lokale Umwelt			nicht bewertungsrelevant

www.sentinel-holding.eu

Produkt:

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

BREEAM DE Neubau 2018

BREEAM (Building Research Establishment Environmental Assessment Methodology) ist ein britisches Gebäudebewertungssystem, welches die Nachhaltigkeit von Neubauten, Sanierungsprojekten und Umbauten einstuft. Das Bewertungssystem wurde vom Building Research Establishment (BRE) entwickelt und zielt darauf ab, ökologische, ökonomische und soziale Auswirkungen von Gebäuden zu bewerten und zu verbessern.

Kriterium	Produktkategorie	Betrachtete Stoffe	Qualitätsstufe
Hea o2 Qualität der Innenraumluft			nicht bewertungsrelevant

Produkt

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

Produktsiegel

In der Baubranche spielt die Auswahl qualitativ hochwertiger Materialien eine zentrale Rolle für die Gesundheit in Gebäuden und deren Nachhaltigkeit. Produktlabels und Zertifikate bieten Orientierung, um diesen Anforderungen gerecht zu werden. Allerdings besitzt jedes Zertifikat und Label eigene Prüfkriterien, die genau betrachtet werden sollten, um sicherzustellen, dass sie den spezifischen Bedürfnissen eines Bauvorhabens entsprechen.

Produkte mit dem QNG-ready Siegel des Sentinel Holding Instituts eignen sich für Projekte, für welche das Qualitätssiegel Nachhaltiges Gebäude (QNG) angestrebt wird. QNG-ready Produkte erfüllen die Anforderungen des QNG Anhangdokument 3.1.3 "Schadstoffvermeidung in Baumaterialien". Das KfW-Kreditprogramm Klimafreundlicher Neubau mit QNG kann eine höhere Fördersumme ermöglichen.

www.sentinel-holding.eu

Produkt:

SHI Produktpass-Nr.:

PYD-ALU FLOOR Nass mit PYD-HKP Hohlkammer-Systemplatte

15102-10-1001

Rechtliche Hinweise

(*) Die Kriterien dieses Steckbriefs beziehen sich auf das gesamte Bauobjekt. Die Bewertung erfolgt auf der Ebene des Gebäudes. Im Rahmen einer sachgemäßen Planung und fachgerechten Installation können einzelne Produkte einen positiven Beitrag zum Gesamtergebnis der Bewertung leisten. Das Sentinel Holding Institut stützt sich einzig auf die Angaben des Herstellers.

Alle Kriterien finden Sie unter:

https://www.sentinel-holding.eu/de/Themenwelten/Pr%C3%BCfkriterien%2of%C3%BCr%2oProdukte

Wir sind stolz darauf, dass die SHI-Datenbank, die erste und einzige Datenbank für Bauprodukte ist, die ihre umfassenden Prozesse sowie die Aktualität regelmäßig von dem unabhängigen Prüfunternehmen SGS-TÜV Saar überprüfen lässt.

Herausgeber

Sentinel Holding Institut GmbH Bötzinger Str. 38 79111 Freiburg im Breisgau Tel.: +49 761 59048170 info@sentinel-holding.eu www.sentinel-holding.eu

Die Flächenheizung & Flächenkühlung für Behaglichkeit

PYD-ALU® FLOOR Nass

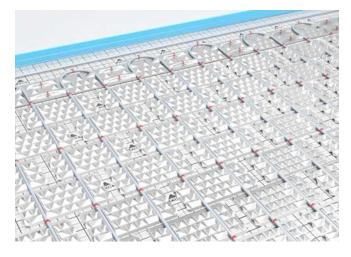
Die Fußbodenheizung & Fußbodenkühlung

PYD-Thermosysteme GmbH

Am Pfaffenkogel 11 D-83483 Bischofswiesen

Tel. +49 8652 9466-0 Fax +49 8652 9466-17

info@pyd.de www.pyd.de



PYD-ALU® FLOOR Nass Produktbeschreibung

PYD

PYD-ALU® FLOOR Nass

PYD-ALU® FLOOR Nass ist die einfach-geniale Lösung zur optimalen Energieausnutzung. Diese Fußbodenheizung/-kühlung überzeugt mit fühlbarer Behaglichkeit und optimaler Regelbarkeit. Als Nasssystem eignet es sich für den Einsatz mit Zement- sowie Calciumsulfatestrich.

Leichtes und schnelles Verlegen gemäß DIN EN1264, verspricht PYD $^{\oplus}$ ein Höchstmaß an Qualität und Heizleistung in puncto Flächentemperierung.

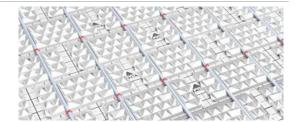
Wir bieten Ihnen die nötige Sicherheit durch eine 10-jährige Systemgewährleistung, abgesichert durch ein unabhängiges Versicherungsunternehmen. Planungssicherheit durch die notwendige wärmetechnische Prüfung von Warmwasser-Fußbodenheizungen und -kühlungen nach: DIN 1264 Teil 1-5.

Register-Nr. 7F417-F

Die Vorteile auf einen Blick

- · Steigert die Leistungszahlen bei Wärmepumpen
- Bestens geeignet für Brennwertgeräte und solarbetriebene Anlagen
- Der zusätzliche Einsatz von PYD®-Stahlfasern im Estrich erhöht die Heiz- und Kühlleistung nochmals
- Vorlauftemperaturen im Heizbetrieb unter 30 °C möglich
- Oberflächentemperaturen kaum über Raumtemperatur
- Maximale Heiz- und Kühlleistung

Besonderheiten der Technik

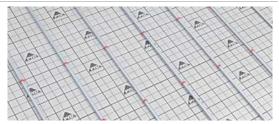

Unsere PYD-ALU® Systeme haben einen Verlegeabstand von 28 cm, der mittels unserem eigens dafür entwickelten Umlenkblech vorgegeben wird. Die erhöhte Leistungsabgabe wird durch unserem Herzstück, dem PYD-ALU® Thermoleitblech aus Aluminium mit Pyramidenprägung erreicht.

Unsere Systeme

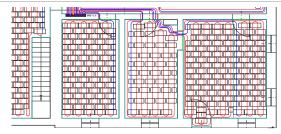
PYD-ALU® FLOOR Nass VV - Vollverlegung

Die vollflächige Auslegung mit dem PYD-ALU® Thermoleitblech schafft mit maximaler Heiz-/Kühlleistung die ideale Behaglichkeit für Wohn- und Aufenthaltsräume.

100 % Auslegung für 100 % Leistung


PYD-ALU® FLOOR Nass NV - Normalverlegung

Die 50% ige Auslegung mit dem PYD-ALU® Thermoleitblech schafft mit hoher Heiz- / Kühlleistung die ideale Behaglichkeit für Nebenräume.


PYD-ALU® FLOOR Nass RA - Verlegung ohne Thermoleitblech

Reine Rohverlegung mit 28 cm Verlegeabstand zur Ausführung in untergeordneten Räumen ohne hohe Ansprüche an die Heiz- und Kühlleistung.

PYD-ALU® FLOOR Nass - Verlegeplanung

Um eine optimale Verlegung zu gewährleisten, erstellen wir bei Beauftragung einen individuellen Verlegeplan. Im Verlegeplan werden alle Verlegearten und Rohrführungen so dargestellt, dass bei der Ausführung ohne Zeitverlust mit der Verlegung begonnen werden kann.

Systemkomponenten, Montagezeiten

Systemkomponenten

PYD-ALU® Thermoleitblech

Thermoleitblech aus Aluminium mit Pyramidenprägung zur Flächenvergrößerung für eine gleichmäßige Temperaturverteilung und hohe Heiz- und Kühlleistung. Bei Calciumsulfat- / Fließestrichen muss das beschichtete Blech verwendet werden.

PYD-ALU® Thermoleitblech halbe Größe

Thermoleitblech halbe Größe, aus Aluminium mit Pyramidenprägung zur Flächenvergrößerung für eine gleichmäßige Temperaturverteilung und hohe Heiz- und Kühlleistung. Bei Calciumsulfat- / Fließestrichen muss das beschichtete Blech verwendet werden.

PYD-ALU® Umlenkbogen

Umlenkbogen aus Aluminium für den optimalen Halt des Systemrohrs. Bei Calciumsulfat- / Fließestrichen muss das beschichtete Blech verwendet werden.

PYD®-Systemrohr 20 x 2

Flexibles 5-Schicht-Vollkunststoff-Verbundrohr aus PE-RT mit innenliegender und damit geschützter Sauerstoffsperre.

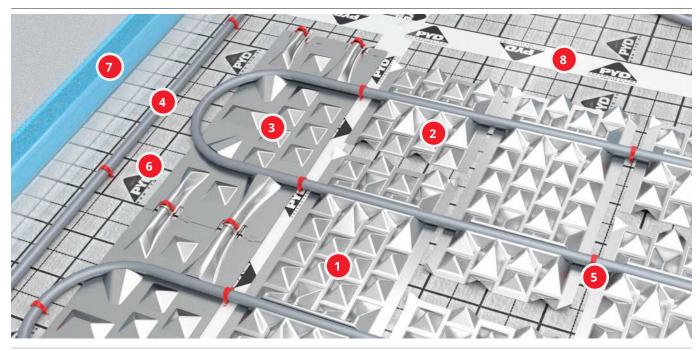
PYD®-Systemclips

Zur Befestigung des Systemrohres und der Umlenkbleche auf der Systemplatte.

PYD®-Systemplatte oder PYD®-Hohlkammerplatte

Systemplatte in den verschiedensten Ausführungen für einen optimalen Fußbodenaufbauen. Entweder als EPS Trittschalldämmplatte mit reißfester und wasserdichter Gewebebeschichtung oder als Hohlkammer-Verlegeplatte zur Montage auf bauseitiger Dämmung, wie z.B. Mineralfaserdämmungen.

PYD®-Randdämmstreifen


Universelle Randdämmstreifen mit Folienlappung. Wahlweise aus PE-Schaum oder Mineralfaser.

PYD®-Klebeband

Zum verkleben der Stoßkanten der Systemplatten. Bei Calciumsulfatestrich zusätzlich zum verkleben der Folienlappung des Randdämmstreifens.

Montagezeiten

Bei der Verlegung des PYD-ALU® FLOOR Nass Systems ist mit einer Gruppenzeit (2 Personen) für VV von 5 - 7 min/m², NV von 4 - 6 min/m² und für RA von 3 - 5 min/m² zu rechnen. Die Montagezeit bezieht sich auf 1 m² fertig verlegt, mit einer Lage PYD®-Faltplatte und PYD®-Randdämmstreifen inkl. Anschluss an den PYD®-Verteiler.

Kennliniendiagramm

Heizen

PYD-ALU® FLOOR Nass wird im Heizfall in der Regel mit Vorlauftemperaturen von 28 - 33 °C betrieben. Diese liegen in der Regel ca. 15 % niedriger (Beispiel: Parkett 0,1 m²K/W), als bei herkömmlichen Nurrohrfußbodenheizungen. Dadurch wird ein wirtschaftliches und energiebewusstes Heizen möglich. Z. B. werden bei Wärmepumpen die COP-Zahlen erhöht.

Die Wärmepumpe läuft in einem höheren Leistungsbereich und es kann sogar mit einer Luftwärmepumpe kostensparend in der Anschaffung und energiesparend im Betrieb gearbeitet werden.

Durch die patentierten PYD-ALU® Thermoleitbleche ergibt sich eine sehr gleichmäßige Oberflächentemperatur. Ebenso wird eine schnelle Aufheizung des Bodens durch Einsparung an Estrichmasse unter den Pyramiden garantiert.

Die normgerechten PYD®-Systemrohre 20 x 2 mm aus PE-RT ermöglichen einen geringeren Druckverlust im System als Rohre mit z.B. 16 x 2 mm. Es können Heiz- und Kühlkreise bis ca. 30 m² realisiert werden, was eine enorme Einsparung an Heizkreisen und elektrischen Stellantrieben mit sich

Kühlen

Der Doppelnutzen Heizen/Kühlen

PYD-ALU® FLOOR Nass kann nicht nur im Winter zum Heizen, sondern im Sommer auch zum Kühlen verwendet werden. Hierdurch ergibt sich ein Doppelnutzen und weiterer Einsatzbereich.

Mit relativ geringem Mehraufwand ist z. B. eine Wärmepumpe so ausführbar, dass eine Fußbodenheizung auch im Sommer zum Kühlen der Räume genutzt werden kann.

Hierbei ist eine Kühlleistung von bis zu 55 W/m² möglich, ohne den Taupunkt an der Fußbodenoberfläche herbeizuführen.

Die Fußbodenoberflächentemperatur sollte dabei aus Behaglichkeitsgründen nicht unter 19 °C liegen damit ein optimales Wohlbefinden des Nutzers gewährleistet ist.

Das System PYD-ALU® FLOOR Nass arbeitet im Kühlfall ohne Zugluft und absolut geräuschfrei. Man spricht daher auch von "stiller Kühlung". Der Energieaustausch mittels Strahlung entspricht den natürlichen Verhältnissen und wird als sehr behaglich empfunden.

PYD-ALU® FLOOR Nass ist nach DIN 1264 geprüft und von der DIN CERTO Überwachungsstelle zertifiziert.

Kennliniendiagramm Heizen

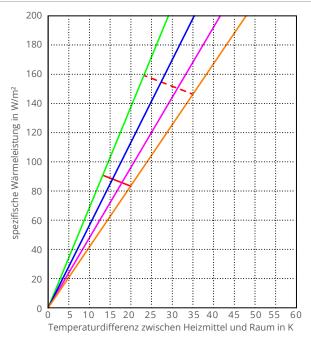


Diagramm 4.1 Kennlinienfeld Heizung PYD-ALU® FLOOR Nass

Kennliniendiagramm Kühlen

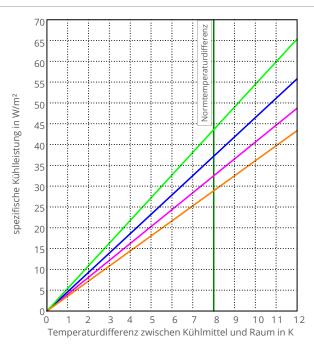


Diagramm 4.2 Kennlinienfeld Kühlung PYD-ALU® FLOOR Nass

Legende:

Zulässige Fußbodenoberflächentemperaturen nach DIN 1264 Teil 3: Aufenthaltszonen max. 29 °C Randzonen max. 35 °C Bäder max. 33 °C

Leistungswerte gültig bei 45 mm Estrichüberdeckung

Zulässige Fußbodenoberflächentemperaturen aus Behaglichkeitsgründen min. 19 °C

Achtung: Es sind technische Regelkomponenten anzubringen, die eine Unterschreitung des Taupunktes im Kühlfall verhindern!

Auslegungsparameter der Fußbodenheizung

Grenzwerte der Oberflächentemperaturen gem. DIN EN 1264

Maximale Oberfächentemperaturen des Bodenbelags. Im Kennlinienfeld werden diese als Grenzkurve dargestellt.

· Aufenthaltszone: Randzone: Bäder:

Raumtemperaturen gem. DIN EN 12831

Wenn vom Bauherrn keine Angaben über die gewünschten Raumtemperaturen gemacht wurden, dann werden die in der DIN EN 12831 aufgeführten Norm-Innentemperaturen für die Planung verwendet.

aumart	Norm-Raumtemperatur Q_{int} [°C]
Wohn- und Schlafräume	+20
Büroräume, Sitzungszimmer, Ausstellungsräume, Haupttreppenräume, Schalterhallen	+20
Hotelzimmer	+20
Verkaufsräume und Läden allgemein	+20
Unterrichtsräume allgemein	+20
Theater und Konzerträume	+20
 Bade- und Duschräume, Bäder, Umkleideräume, Untersuchungszimmer (generell jede Nutzung für den unbekleideten Bereich) 	+24
• WC-Räume	+20
Beheizte Nebenräume (Flure, Treppenhäuser)	+15
Unbekleidete Nebenräume (Keller, Treppenhäuser, Abstellräume)	+10

Heizmittelübertemperatur gem. DIN EN 1264

Mit der Heizmittelübertemperatur lässt sich aus dem Kennlinienfeld (S. 4 Diagramm 4.1) die mögliche Leistung ermitteln.

$$\triangle v_{H} = \frac{v_{V}^{-}v_{R}}{\ln \frac{v_{V}^{-}v_{i}}{v_{R}^{-}v_{i}}}$$

: Heizmittelübertemperatur in K

: Vorlauftemperatur in °C

: Rücklauftemperatur in °C

: Raumtemperatur in dem zu berechnenden Raum in °C v_i

Auslegungsvorlauftemperatur gem. DIN EN 1264

Die Auslegungsvorlauftemperatur wird so gewählt, dass der Raum mit der höchsten Wärmestromdichte (ausgenommen Bäder) gedeckt werden kann, ohne dabei die maximale Oberflächentemperatur gem. DIN 18560, Teil 2 zu überschreiten.

$$v_{V, \text{ Ausl}} \le v_i + \triangle v_{H, \text{ Ausl}} + \frac{s}{2}$$

 $v_{V, \text{ Ausl}}$

: Auslegungsvorlauftemperatur in °C

 $\stackrel{\textstyle \sim}{\sim} \! \upsilon_{\mathsf{H, Ausl}} \;$: Auslegungs-Heizmittelübertemperatur in K

: Heizmittelspreizung allgemein und des Auslegungskreises in K

Aus den Leistungstabellen ab Seite 7 bis 10 kann man zur Erleichterung die entsprechenden Leistungen bei gewünschter Vorlauftemperatur / Raumtemperatur / Verlegeart in Abhängigkeit der Spreizung ablesen.

Auslegungsparameter der Fußbodenkühlung

Die Auslegung der Fußbodenkühlung gestaltet sich im Grunde genauso wie die Fußbodenheizung. Mit der Kühlmitteluntertemperatur wird die Wärmestromdichte aus dem Kennlinienfeld ermittelt.

$$\triangle v_{\text{C}} = \frac{v_{\text{C,out}} - v_{\text{C, in}}}{\ln \frac{v_{\text{C, in}} - v_{\text{i}}}{v_{\text{C, out}} - v_{\text{i}}}}$$

: Kühlmitteluntertemperatur

 $v_{\mathsf{C,\,out}}$ $v_{\mathsf{C, in}}$

: die Austritts-(Rücklauf-) Temperatur des Kühlwassers : die Eintritts-(Vorlauf-) Temperatur des Kühlwassers

: die Norm-Innentemperatur, $\mathbf{0}_{i}$ =26 °C

Die Oberflächentemperatur sollte aus Behaglichkeitsgründen 19 °C nicht unterschreiten. Die Eintrittstemperatur des Kühlwassers sollte nicht geringer als 15 °C gewählt werden um die Möglichkeit einer Taupunktunterschreitung zu verringern. Es sollten außerdem Maßnahmen gegen eine Taupunktunterschreitung in Form von Feuchtefühlern getroffen werden.

Aus den Leistungstabellen auf Seite 11 kann man zur Erleichterung die entsprechenden Leistungen bei gewünschter Vorlauftemperatur / Verlegeart in Abhängigkeit der Spreizung ablesen.

Auslegungsparameter der Fußbodenheizung

Wärmeleitwiderstand des Bodenbelags

Bei der Auslegung einer Flächenheizung ist es wichtig für die Ermittlung der Wärmestromdichte den exakten Wärmeleitwiderstandes des geplanten Bodenbelags anzusetzen. Viele Bodenbelagshersteller geben für ihr Produkt diesen Wert vor. Hat man im Vorfeld schon eine gewisse Vorstellung, welcher Werkstoff eingesetzt wird, dann kann man mit der entsprechenden Wärmeleitfähigkeit λ [W/mK] und der gewünschte Dicke d [m], den Wärmeleitwiderstand R [m²K/W] ermitteln. Das Diagramm 6.1 kann man bei Bedarf zur Ermittlung heranziehen.

Mit der nachfolgenden Formel kann der Wärmeleitwiderstand einfach errechnet werden:

 $R = d/\lambda$

Beispiel:

Eichenparkett mit 20 mm Stärke

 $\lambda = 0.20 \text{ W/mK}$

 $R = 0.02 / 0.20 = 0.1 \text{ m}^2\text{K/W}$

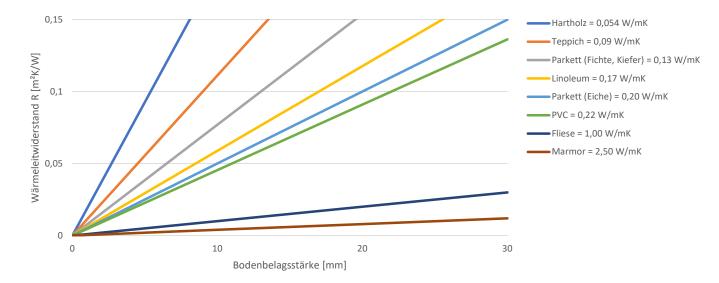


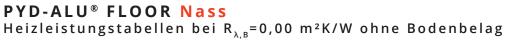
Diagramm 6.1 Wärmeleitwiderstand in Beziehung zum Bodenbelag

Berechnungsbeispiel Heizen

•	Verlegeart:	VV
•	Raumart:	Wohnen
•	Wärmestromdichte:	$q = 60 \text{ W/m}^2$
•	Raumtemperatur:	ϑ _i = 20 °C
•	Bodenbelag:	Parkett
•	Wärmeleitwiderstand:	$R_{\lambda B} = 0.10 \text{ m}^2 \text{K/W}$
	Spreizung.	$\sigma = 5 \text{ K}$

Ermittlung der Heizmittelübertemperatur $\Delta \vartheta_{_{\rm H}}$

Aus dem Kennliniendiagramm Heizung (Diagramm 4.1, S.4) ergibt sich für die geforderte Wärmestromdichte von 60 W/m² eine Heizmittelübertemperatur von **12,5 K**.


Berechnung der Auslegungsvorlauftemperatur $\vartheta_{\text{\tiny V,Ausl.}}$

Alle Werte werden in die Formel der Auslegungstemperatur eingesetzt:

$$\vartheta_{\text{V,Ausl.}} = 20 \, ^{\circ}\text{C} + 12,5 \, \text{K} + 5 \text{K}/2$$

 $\vartheta_{\text{V,Ausl.}} = 35 \, ^{\circ}\text{C}$

Alternative Bestimmung der Vorlauftemperatur

Zur Bestimmung der Vorlauftemperatur können auch die Tabellen von S. 7 bis 10 verwendet werden. Mit diesen Tabellen können auch die Heizleistungen für die Verlegearten VV (ST), NV und RA ermittelt werden.

Spreizung 3 K

_									He	izmit	telten	npera	tur in	°C							
- T	۶	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5
Raum- temperatu	System								Vo	rlauft	empe	ratur	Θ _{VL} in	°C							
R H	Ś	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
4									Н	eizleis	stung	Q _{snez} i	n W/r	n²							
	VV(ST)	78	86	94	103	111	119	128	136	144	152	161	169	177	186	194	202	210	219	227	235
15	W	65	72	79	86	93	99	106	113	120	127	134	141								
15	NV	50	55	61	66	71	76	82	87	92	98	103	108	114	119	124	130	135	140	145	
	RA	34	38	42	45	49	53	56	60	64	67	71	75	78	82	86	89	93	97	100	104
	VV(ST)	53	61	69	78	86	94	103	111												
18	VV	44	51	58	65	72	79	86	93	99	106				134	141					
10	NV	34	39	45	50	55	61	66	71	76	82	87	92	98	103	108					
	RA	23	27	31	34	38	42	45	49	53	56	60	64	67	71	75	78	82	86	89	93
	VV(ST)	36	44	53	61	69	78	86	94												
20	VV	30	37	44	51	58	65	72	79	86											
20	NV	23	28	34	39	45	50	55	61	66	71	76	82	87							
	RA	16	20	23	27	31	34	38	42	45	49	53	56	60	64	67	71	75	78	82	86
	VV(ST)	18	27	36	44	53	61	69													
22	VV	15	23	30	37	44	51	58	65												
22	NV	11	17	23	28	34	39	45	50	55	61	66									
	RA	8	12	16	20	23	27	31	34	38	42	45	49	53	56	60	64	67	71	75	78
	VV(ST)			18	27	36	44														
24	W			15	23	30	37	44													
24	NV			11	17	23	28	34	39	45											
	RA			8	12	16	20	23	27	31	34	38	42	45	49	53	56	60	64	67	71

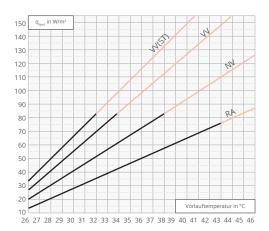


Diagramm 7.1 Kennlinie bei ⊖_{int} = 20 °C

Spreizung 5 K

		_																			
_									He	eizmit	telten	npera	tur in	°C							
-l	Ε	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ _v in	°C							
Re	S	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
2									Н	eizleis	stung	Q _{spez} i	n W/r	n²							
	VV(ST)	68	77	85	93	102	110	119	127	135	144	152	160	168	177	185	193	202	210	218	226
15	VV	57	64	71	78	85	92	99	106	113	120	127	133	140	147						189
15	NV	44	49	55	60	65	71	76	81	87	92	97	103	108	113	119	124	129	135	140	145
	RA	30	34	38	41	45	49	52	56	60	63	67	71	74	78	82	85	89	93	96	100
	VV(ST)	42	51	60	68	77	85	93	102	110											202
18	VV	35	42	50	57	64	71	78	85	92	99	106	113								168
10	NV	27	33	38	44	49	55	60	65	71	76	81	87	92	97	103	108				129
	RA	19	23	26	30	34	38	41	45	49	52	56	60	63	67	71	74	78	82	85	89
	VV(ST)	23	33	42	51	60	68	77	85	93	102										
20	VV	19	27	35	42	50	57	64	71	78	85	92	99	106	113						154
20	NV	15	21	27	33	38	44	49	55	60	65	71	76	81	87	92	97	103	108	113	119
	RA	10	15	19	23	26	30	34	38	41	45	49	52	56	60	63	67	71	74	78	82
	VV(ST)			23	33	42	51	60	68	77											
22	VV			19	27	35	42	50	57	64	71	78	85								
	NV			15	21	27	33	38	44	49	55	60	65	71	76	81	87				108
	RA			10	15	19	23	26	30	34	38	41	45	49	52	56	60	63	67	71	74
	VV(ST)					23	33	42	51		68										152
24	VV					19	27	35	42	50	57										
	NV					15	21	27	33	38	44	49	55	60							
	RA					10	15	19	23	26	30	34	38	41							

Tabelle 7.2 Ermittlung der Heizleistung in W/m² bei 5 K Spreizung

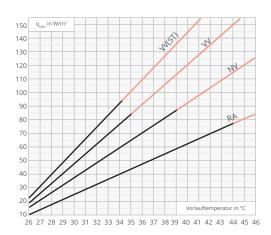


Diagramm 7.2 Kennlinie bei Θ_{int} = 20 °C

Spreizung 8 K

_									Н	eizmit	telten	npera	tur in	°C							
는 리	۶	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ _{VL} in	°C							
En R	Ś	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
- 5									Н	eizleis	stung	Q _{snez} i	n W/n	n²							
	VV(ST)	51	60	69	78	87	95	104	112	121	129	138	146	155	163	171	180	188	196	205	213
15	VV	42	50	58	65	72	79	87	94	101	108	115	122	129	136	143					
15	NV	33	39	44	50	56	61	67	72	77	83	88	94	99	104	110	115	121	126	131	137
	RA	22	27	31	34	38	42	46	50	53	57	61	65	68	72	76	79	83	87	90	94
	VV(ST)		30	41	51	60	69	78	87	95	104	112									188
18	VV		25	34	42	50	58	65	72	79	87	94	101	108							
10	NV		19	26	33	39	44	50	56	61	67	72	77	83	88	94	99	104	110		
	RA		13	18	22	27	31	34	38	42	46	50	53	57	61	65	68	72	76	79	83
	VV(ST)				30	41	51	60	69	78	87										
20	VV				25	34	42	50	58	65	72	79	87								143
20	NV				19	26	33	39	44	50	56	61	67	72	77	83	88				110
	RA				13	18	22	27	31	34	38	42	46	50	53	57	61	65	68	72	76
	VV(ST)						30	41	51	60	69	78	87	95				129	138	146	155
22	VV						25	34	42	50	58	65									
22	NV						19	26	33	39	44	50	56	61	67						
	RA						13	18	22	27	31	34	38	42	46	50	53	57	61	65	68
	VV(ST)								30	41											138
24	VV								25	34	42										
24	NV								19	26	33	39	44								
	RA								13	18	22	27	31	34	38	42					61

Tabelle 7.3 Ermittlung der Heizleistung in W/m² bei 8 K Spreizung

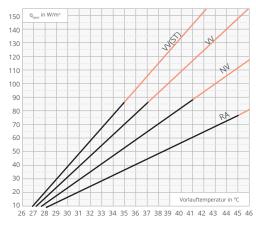
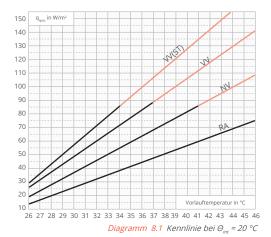
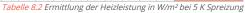


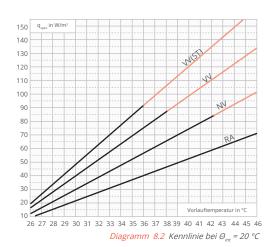
Diagramm 7.3 Kennlinie bei Θ_{int} = 20 °C

Fußbodenoberflächentemperaturen von 29 °C bis 35 °C

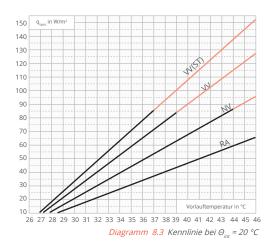

Fußbodenoberflächentemperaturen > 35 °C; gem. DIN EN 1264 nicht zulässig

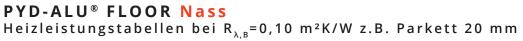
Heizleistungstabellen bei $R_{\lambda,B}$ =0,05 m²K/W z.B. Linoleum


Spreizung 3 K


_									Не	eizmit	telten	pera	tur in	°C							
aft.	۶	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ _v in	°C							
Re	S	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
ţ									Н	eizleis	tung	Q.,,, i	n W/n	n²							
	VV(ST)	64	71	78	85	91	98	105	112	119	125	132	139	146							194
15	VV	53	59	65	70	76	82	88	93	99	105	110	116	122	127	133	139				
13	NV	41	45	50	54	59	63	67	72	76	80	85	89	94	98	102	107	111	115	120	124
	RA	28	31	34	37	40	43	46	49	52	55	58	61	64	67	71	74	77	80	83	86
	VV(ST)	43	50	57	64	71	78	85	91	98	105	112	119	125	132	139	146	153	160	166	173
18	VV	36	42	48	53	59	65	70	76	82	88	93	99	105							144
18	NV	28	32	37	41	45	50	54	59	63	67	72	76	80	85	89	94	98	102	107	
	RA	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	71	74	77
	VV(ST)	29	36	43	50	57	64	71	78	85											160
20	VV	25	30	36	42	48	53	59	65	70	76	82	88								133
20	NV	19	23	28	32	37	41	45	50	54	59	63	67	72	76	80	85				102
	RA	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	71
	VV(ST)	15	22	29	36	43	50	57	64												146
22	VV	12	19	25	30	36	42	48	53	59	65										
22	NV	9	14	19	23	28	32	37	41	45	50	54	59	63							
	RA	7	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64
	VV(ST)			15	22	29	36	43	50	57	64	71	78	85	91	98	105	112	119	125	132
24	VV			12	19	25	30	36	42	48	53	59	65	70	76	82	88	93	99	105	110
24	NV			9	14	19	23	28	32	37	41	45	50	54	59	63	67	72	76	80	85
	RA			7	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58
								Tabe	elle 8	.1 Er	mittl	ung d	der F	leizle	istur	ng in	W/m	12 bei	3 K.	Sprei	izung

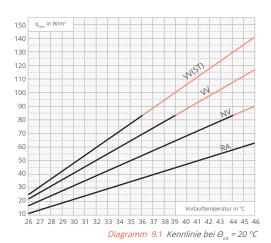
Spreizung 5 K


									Не	eizmit	telten	nperat	tur in	°C							
Raum- temperatur	_	23.5	24.5	25.5	26.5	27.5	28.5	29.5			32,5				36.5	37.5	38.5	39.5	40.5	41.5	42.5
Raum- nperat	System		,-		,-	/					empe				,-	,.		00/0	,.	,-	,
Rai	Sys	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
te		20	21	20	23	30	31	32							39	40	41	42	43	44	40
											stung										
	VV(ST)	56	63	70	77	84	91	98	104	111	118	125	132	139	145	152	159	166			186
15	VV	47	53	58	64	70	76	81	87	93	98	104	110	116	121	127	133	138	144	150	155
.5	NV	36	40	45	49	54	58	63	67	71	76	80	84	89	93	98	102	106	111	115	119
	RA	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	70	73	76	79	82
	VV(ST)	35	42	49	56	63	70	77	84	91	98	104	111								166
18	VV	29	35	41	47	53	58	64	70	76	81	87	93	98	104	110					138
10	NV	22	27	31	36	40	45	49	54	58	63	67	71	76	80	84	89	93	98	102	106
	RA	15	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	70	73
	VV(ST)	19	27	35	42	49	56	63	70	77	84	91	98						139		152
20	VV	16	23	29	35	41	47	53	58	64	70	76	81	87							127
20	NV	12	17	22	27	31	36	40	45	49	54	58	63	67	71	76	80	84			98
	RA	8	12	15	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67
	VV(ST)			19	27	35	42	49	56	63	70	77	84	91	98	104	111	118	125	132	139
22	VV			16	23	29	35	41	47	53	58	64									116
22	NV			12	17	22	27	31	36	40	45	49	54	58	63						89
	RA			8	12	15	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61
	VV(ST)					19	27	35	42	49	56	63	70	77	84	91	98	104	111	118	125
24	VV					16	23	29	35	41											104
24	NV					12	17	22	27	31	36	40	45								80
	RA					8	12	15	19	22	25	28	31	34	37	40	43				55

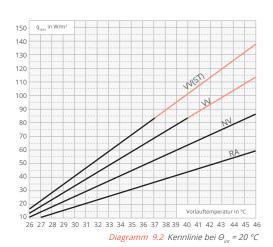

Spreizung 8 K

									He	eizmit	telten	npera	tur in	°C							
- atr	Ε	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ _{vi} in	°C							
Re	Š	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
25			Vorlauftemperatur O _N in *\circ U O _N in *\																		
	VV(ST)	42	49	57	64	71	78	85	93	99	106	113	120	127	134	141					175
15	VV	35	41	47	53	59	65	71	77	83	89	94	100	106	112	117	123	129	135	140	146
15	NV	27	32	36	41	46	50	55	59	64	68	73	77	82	86	90	95	99	104	108	112
	RA	18	22	25	28	32	35	38	41	44	47	50	53	56	59	62	65	68	71	74	77
	VV(ST)		25	34	42	49	57	64	71	78	85	93	99	106							155
18	VV		21	28	35	41	47	53	59	65	71	77	83	89	94	100	106				129
10	NV		16	22	27	32	36	41	46	50	55	59	64	68	73	77	82	86	90	95	99
	RA		11	15	18	22	25	28	32	35	38	41	44	47	50	53	56	59	62	65	68
	VV(ST)				25	34	42	49	57	64	71	78	85								141
20	VV				21	28	35	41	47	53	59	65	71	77	83						117
20	NV				16	22	27	32	36	41	46	50	55	59	64	68	73	77	82	86	90
	RA				11	15	18	22	25	28	32	35	38	41	44	47	50	53	56	59	62
	VV(ST)						25	34		49	57	64		78							127
22	VV						21	28	35	41	47	53	59	65							106
22	NV						16	22	27	32	36	41	46	50	55	59	64				82
	RA						11	15	18	22	25	28	32	35	38	41	44	47	50	53	56
	VV(ST)								25	34	42										113
24	VV								21	28	35	41									94
24	NV								16	22	27	32	36	41							73
	RA								11	15	18	22	25	28	32	35	38	41	44	47	50
								Tabe	elle 8	.3 Er	mittl	ung d	der F	leizle	istur	ng in	W/m	² bei	8 K .	Sprei	izung

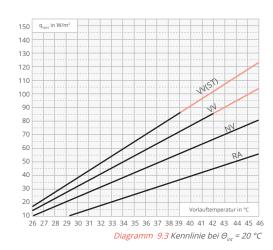
Fußbodenoberflächentemperaturen von 29 °C bis 35 °C


Fußbodenoberflächentemperaturen > 35 °C; gem. DIN EN 1264 nicht zulässig

Spreizung 3 K


_									Н	eizmit	telten	npera	tur in	°C							
. 2	_	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5
Raum- temperatu	System									rlauft											
15 E	Š	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
72									Н	eizleis	stung	Q i	n W/r	n²							
	VV(ST)	54	60	66	72	78	83	89	95	101	107	112	118	124	130	136	141				
15	VV	45	50	55	60	65	70	74	79	84	89	94	98	103	108	113	118	123	127	132	137
15	NV	35	39	42	46	50	53	57	61	65	68	72	76	79	83	87	91	94	98	102	105
	RA	24	27	29	32	34	37	39	42	45	47	50	52	55	57	60	62	65	68	70	73
	VV(ST)	37	43	49	54	60	66	72	78	83	89	95	101	107							
18	VV	31	36	40	45	50	55	60	65	70	74	79	84	89	94	98	103				
18	NV	24	27	31	35	39	42	46	50	53	57	61	65	68	72	76	79	83	87	91	94
	RA	16	19	21	24	27	29	32	34	37	39	42	45	47	50	52	55	57	60	62	65
	VV(ST)	25	31	37	43	49	54	60	66	72	78	83	89								
20	VV	21	26	31	36	40	45	50	55	60	65	70	74	79	84						
20	NV	16	20	24	27	31	35	39	42	46	50	53	57	61	65	68	72	76	79	83	
	RA	11	14	16	19	21	24	27	29	32	34	37	39	42	45	47	50	52	55	57	60
	VV(ST)	12	19	25	31	37	43	49	54	60	66										
22	VV	10	16	21	26	31	36	40	45	50	55	60	65								
22	NV	8	12	16	20	24	27	31	35	39	42	46	50	53	57	61					
	RA	6	8	11	14	16	19	21	24	27	29	32	34	37	39	42	45	47	50	52	55
	VV(ST)			12	19	25	31	37	43	49											
24	VV			10	16	21	26	31	36	40											
24	NV			8	12	16	20	24	27	31	35	39	42	46							
	RA			6	8	11	14	16	19	21	24	27	29	32	34	37	39	42	45	47	50
							Tabe	elle 9	.1 Er	mittl	ung c	der H	leizle	istur	ng in	W/m	² bei	3 K S	Sprei.	zung	

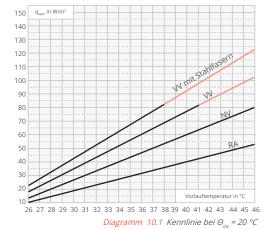
Spreizung 5 K


_											telten										
atc.	Ε	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ,, in	°C							
Ra m	Š	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
<u>ء</u>									Н	ونماحتم	stung										
	\A ((CT)	40	F.4		c r	74		0.2							424	420	425	4.44			450
	VV(ST)	48	54	59	65	71	77	83	89	95	100	106	112	118	124	129	135	141	147	153	158
15	VV	40	45	50	54	59	64	69	74	79	84	88	93	98	103	108	113	118	122	127	132
	NV	31	34	38	42	46	49	53	57	61	64	68	72	76	79	83	87	90	94	98	102
	RA	21	24	26	29	31	34	37	39	42	44	47	50	52	55	57	60	62	65	67	70
	VV(ST)	29	36	42	48	54	59	65	71	77	83	89	95	100	106	112	118	124			141
18	VV	25	30	35	40	45	50	54	59	64	69	74	79	84	88	93	98	103	108	113	118
10	NV	19	23	27	31	34	38	42	46	49	53	57	61	64	68	72	76	79	83	87	90
	RA	13	16	18	21	24	26	29	31	34	37	39	42	44	47	50	52	55	57	60	62
	VV(ST)	16	23	29	36	42	48	54	59	65	71	77	83								129
20	VV	13	19	25	30	35	40	45	50	54	59	64	69	74	79	84					108
20	NV	10	15	19	23	27	31	34	38	42	46	49	53	57	61	64	68	72	76	79	83
	RA	7	10	13	16	18	21	24	26	29	31	34	37	39	42	44	47	50	52	55	57
	VV(ST)			16	23	29	36	42	48	54	59	65	71	77	83	89	95	100	106	112	118
22	VV			13	19	25	30	35	40	45	50	54	59	64							98
22	NV			10	15	19	23	27	31	34	38	42	46	49	53	57	61				76
	RA			7	10	13	16	18	21	24	26	29	31	34	37	39	42	44	47	50	52
	VV(ST)					16	23	29	36	42	48	54	59	65	71	77	83	89	95	100	106
24	VV					13	19	25	30	35	40	45									88
24	NV					10	15	19	23	27	31	34	38	42							68
	RA					7	10	13	16	18	21	24	26	29	31	34	37	39	42	44	47

Spreizung 8 K

_									Н	eizmit	telten	npera	tur in	°C							
-f	Ε	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ _{VL} in	°C							
em R	2	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
٠									Н	eizleis	stung	Q _{spez} i	n W/n	n²							
	VV(ST)	36	42	48	55	61	67	73	79	85	90	96	102	108	114	120	126	131	137	143	
15	VV	30	35	40	45	51	56	61	66	70	75	80	85	90	95	100	105	110	114	119	124
13	NV	23	27	31	35	39	43	47	50	54	58	62	66	69	73	77	81	84	88	92	95
	RA	16	19	21	24	27	29	32	35	37	40	43	45	48	50	53	56	58	61	63	66
	VV(ST)		21	29	36	42	48	55	61	67	73	79	85	90	96	102	108				
18	VV		18	24	30	35	40	45	51	56	61	66	70	75	80	85	90	95	100	105	
18	NV		13	18	23	27	31	35	39	43	47	50	54	58	62	66	69	73	77	81	84
	RA		9	13	16	19	21	24	27	29	32	35	37	40	43	45	48	50	53	56	58
	VV(ST)				21	29	36	42	48	55	61	67	73	79	85						
20	VV				18	24	30	35	40	45	51	56	61	66	70	75	80	85			
20	NV				13	18	23	27	31	35	39	43	47	50	54	58	62	66	69	73	77
	RA				9	13	16	19	21	24	27	29	32	35	37	40	43	45	48	50	53
	VV(ST)						21	29	36	42	48	55	61	67							
22	VV						18	24	30	35	40	45	51	56	61						
22	NV						13	18	23	27	31	35	39	43	47	50	54	58	62		
	RA						9	13	16	19	21	24	27	29	32	35	37	40	43	45	48
	VV(ST)								21	29	36	42									
24	VV								18	24	30	35	40								
24	NV								13	18	23	27	31	35	39	43					
	RA								9	13	16	19	21	24	27	29	32	35	37	40	43
							Tabe	lle 9.	.3 Eri	mittl	ung c	der H	eizle	istur	ig in	W/m	² bei	8 K S	Sprei.	zung	

Fußbodenoberflächentemperaturen von 29 °C bis 35 °C


Fußbodenoberflächentemperaturen > 35 °C; gem. DIN EN 1264 nicht zulässig

Heizleistungstabellen bei $R_{\lambda,B}$ =0,15 m²K/W z.B. Teppich

Spreizung 3 K

_									Не	eizmit	telten	npera	tur in	°C							
- ag	۶	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5	43,5
Raum- temperatur	System								Vo	rlauft	empe	ratur	Θ _{VL} in	°C							
E R	Ś	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
25									Н	eizleis	stung	Q _{spez} i	n W/n	n²							
	VV(ST)	47	52	57	62	68	73	78	83	88	93	98	103	108	113	118	123	128	133	138	143
15	VV	39	44	48	52	56	60	65	69	73	77	81	86	90	94	98	102	107	111	115	119
13	NV	30	34	37	40	43	46	50	53	56	59	63	66	69	72	76	79	82	85	88	92
	RA	21	23	25	28	30	32	34	37	39	41	43	45	48	50	52	54	57	59	61	63
	VV(ST)	32	37	42	47	52	57	62	68	73	78	83	88	93	98	103					128
18	VV	27	31	35	39	44	48	52	56	60	65	69	73	77	81	86	90	94	98	102	107
10	NV	21	24	27	30	34	37	40	43	46	50	53	56	59	63	66	69	72	76	79	82
	RA	14	16	19	21	23	25	28	30	32	34	37	39	41	43	45	48	50	52	54	57
	VV(ST)	22	27	32	37	42	47	52	57	62	68	73	78	83							118
20	VV	18	22	27	31	35	39	44	48	52	56	60	65	69	73	77	81				98
20	NV	14	17	21	24	27	30	34	37	40	43	46	50	53	56	59	63	66	69	72	76
	RA	10	12	14	16	19	21	23	25	28	30	32	34	37	39	41	43	45	48	50	52
	VV(ST)	11	16	22	27	32	37	42	47	52	57	62									108
22	VV	9	14	18	22	27	31	35	39	44	48	52	56	60							90
22	NV	7	11	14	17	21	24	27	30	34	37	40	43	46	50	53	56	59	63	66	69
	RA	5	7	10	12	14	16	19	21	23	25	28	30	32	34	37	39	41	43	45	48
	VV(ST)			11	16	22	27	32	37	42											98
24	VV			9	14	18	22	27	31	35	39	44	48	52							81
24	NV			7	11	14	17	21	24	27	30	34	37	40	43	46	50	53	56	59	63
	RA			5	7	10	12	14	16	19	21	23	25	28	30	32	34	37	39	41	43
							7	abel	le 10	.1 Er	mittl	ung (der F	leizle	istur	ng in	W/m	ı² bei	3 K S	Sprei	zung

Spreizung 5 K

		_																			
_									Н	eizmit	telten	npera	tur in	°C							
٦- atu	Ε	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5	40,5	41,5	42,5
Raum- nperat	System								Vo	rlauft	empe	ratur	Θ _{vi} in	°C							
Raum- temperatur	S	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
ت									Н	eizleis	stung	Q _{spez} i	n W/n	n²							
	VV(ST)	41	47	52	57	62	67	72	77	82	87	92	97	102	107	113	118	123	128	133	138
15	VV	35	39	43	47	52	56	60	64	69	73	77	81	85	90	94	98	102	106	111	115
15	NV	27	30	33	36	40	43	46	49	53	56	59	62	66	69	72	75	79	82	85	88
	RA	18	21	23	25	27	30	32	34	36	39	41	43	45	47	50	52	54	56	59	61
	VV(ST)	26	31	36	41	47	52	57	62	67	72	77	82	87	92	97	102	107	113	118	123
18	VV	21	26	30	35	39	43	47	52	56	60	64	69	73	77	81	85	90	94	98	102
10	NV	16	20	23	27	30	33	36	40	43	46	49	53	56	59	62	66	69	72	75	79
	RA	11	14	16	18	21	23	25	27	30	32	34	36	39	41	43	45	47	50	52	54
	VV(ST)	14	20	26	31	36	41	47	52	57	62	67	72	77	82	87	92	97			
20	VV	12	17	21	26	30	35	39	43	47	52	56	60	64	69	73	77	81	85	90	94
	NV	9	13	16	20	23	27	30	33	36	40	43	46	49	53	56	59	62	66	69	72
_	RA	ь	9	11	14	16	18	21 36	23	25 47	27 52	30 57	32	34 67	36	39	41 82	43 87	45 92	47	50
	VV(ST)			12	17	26	26	30	35	39	43	47	62 52	56	72 60						
22	NV			9	13	16	20	23	27	30	33	36	40	43	46	49	53	56	59		
	RA			6	9	11	14	16	18	21	23	25	27	30	32	34	36	39	41	43	45
	VV(ST)			0	9	14	20	26	31	36	41	47	52	57	62	67	72	77	82	87	92
	VV					12	17	21	26	30	35	39	43								
24	NV					9	13	16	20	23	27	30	33	36	40	43					
	RA					6	9	11	14	16	18	21	23	25	27	30	32	34	36	39	41

Tabelle 10.2 Ermittlung der Heizleistung in W/m² bei 5 K Spreizung

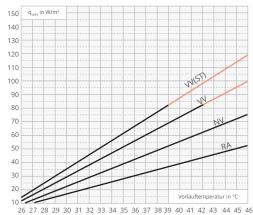
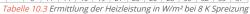



Diagramm 10.2 Kennlinie bei Θ_{int} = 20 °C

Spreizung 8 K

_									He	eizmit	telten	npera	tur in	°C				Heizmitteltemperatur in °C													
-t	Ε	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41										
Raum- temperatur	System								Vo	rlauft	empe	ratur	$\Theta_{_{VL}}$ in	°C																	
em em	S	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45										
ت									Н	eizleis	stung	Q _{spez} i	n W/n	n²																	
	VV(ST)	31	37	42	47	53	58	63	68	73	79	84	89	94	99	104	109	114	119	124	130										
15	VV	26	30	35	40	44	48	53	57	61	66	70	74	78	83	87	91	95	99	104	108										
13	NV	20	23	27	30	34	37	40	44	47	50	54	57	60	63	67	70	73	77	80	83										
	RA	14	16	19	21	23	26	28	30	32	35	37	39	42	44	46	48	51	53	55	57										
	VV(ST)		18	25	31	37	42	47	53	58	63	68	73	79	84	89	94	99	104		114										
18	VV		15	21	26	30	35	40	44	48	53	57	61	66	70	74	78	83	87	91	95										
10	NV		12	16	20	23	27	30	34	37	40	44	47	50	54	57	60	63	67	70	73										
	RA		8	11	14	16	19	21	23	26	28	30	32	35	37	39	42	44	46	48	51										
	VV(ST)				18	25	31	37	42	47	53	58	63	68	73	79	84	89	94	99	104										
20	VV				15	21	26	30	35	40	44	48	53	57	61	66	70	74	78	83	87										
20	NV				12	16	20	23	27	30	34	37	40	44	47	50	54	57	60	63	67										
	RA				8	11	14	16	19	21	23	26	28	30	32	35	37	39	42	44	46										
	VV(ST)						18	25	31	37	42	47	53	58	63						94										
22	VV						15	21	26	30	35	40	44	48	53	57	61	66	70	74	78										
22	NV						12	16	20	23	27	30	34	37	40	44	47	50	54	57	60										
	RA						8	11	14	16	19	21	23	26	28	30	32	35	37	39	42										
	VV(ST)								18	25	31	37	42								84										
24	VV								15	21	26	30	35	40							70										
24	NV								12	16	20	23	27	30	34	37	40	44			54										
	RA								8	11	14	16	19	21	23	26	28	30	32	35	37										

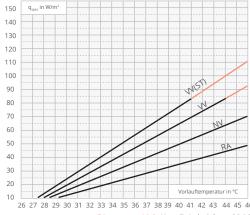
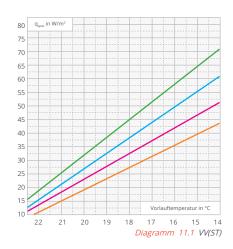


Diagramm 10.3 Kennlinie bei Θ_{int} = 20 °C

Fußbodenoberflächentemperaturen von 29 °C bis 35 °C

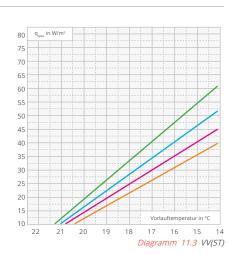

Fußbodenoberflächentemperaturen > 35 °C; gem. DIN EN 1264 nicht zulässig

Spreizung 2 K


_					Kühlmitt	eltempera	atur in °C			
atu	Ε	15	16	17	18	19	20	21	22	23
Kaum- temperatur	System				Vorlaufte	mperatur	r Θ _{vL} in °C			
A E	Ś	14	15	16	17	18	19	20	21	22
-5					Kühlleis	tung Q _{spez}	in W/m²			
									R _{λ'B} 0,00	m²K/\
	VV(ST)		65	59	52	45	39	32	26	19
26	VV		54	49	43	38	32	27	21	16
20	NV	46	42	38	33	29	25	21	16	12
	RA	32	29	26	23	20	17	14	11	8
									R _{λ'B} 0,05	m²K/\
	VV(ST)	61	56	50	44	39	33	28	22	16
26	VV	51	46	42	37	32	28	23	18	13
20	NV	39	36	32	28	25	21	18	14	10
	RA	27	25	22	20	17	15	12	10	7
								F	R _{λ'B} 0,10	m²K/W
	VV(ST)	53	49	44	39	34	29	24	19	14
20	VV	45	41	36	32	28	24	20	16	12
26	NV	34	31	28	25	22	19	15	12	9
	RA	24	21	19	17	15	13	11	8	6
								F	R _{λ'B} 0,15	m²K/W
	VV(ST)	47	43	39	34	30	26	21	17	12
26	VV	40	36	32	29	25	21	18	14	10
20	NV	30	28	25	22	19	16	14	11	8
	RA	21	19	17	15	13	11	9	7	6

Spreizung 3 K

Ξ.						eltempera				
att	Ε	15,5	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5
Raum- temperatur	System				Vorlaufte	emperatur	Θ _{vL} in °C			
R H	Ś	14	15	16	17	18	19	20	21	22
Ţ					Kühlleis	tung Q _{spez}	in W/m ²			
								R	λ _{λ'B} 0,00	m²K/W
	VV(ST)	68	62	55	48	42	35	28	21	14
26	VV		51	46	40	35	29	24	18	12
20	NV	44	39	35	31	27	22	18	14	9
	RA	30	27	24	21	18	15	13	9	6
								R	λ _{λ'B} 0,05	m²K/W
	VV(ST)		53	47	41	36	30	24	18	12
26	VV	49	44	39	34	30	25	20	15	10
20	NV	37	34	30	26	23	19	15	12	8
	RA	26	23	21	18	16	13	11	8	5
								R	λ _{ν,Β} 0,10	m²K/W
	VV(ST)	51	46	41	36	31	26	21	16	11
26	VV	42	38	34	30	26	22	18	13	9 7
20	NV	33	29	26	23	20	17	14	10	
	RA	22	20	18	16	14	12	9	7	5
								R	λ _{λ'B} 0,15	m²K/W
	VV(ST)	45	41	36	32	28	23	19	14	9
26	VV	38	34	30	27	23	19	16	12	8
20	NV	29	26	23	21	18	15	12	9	6
	RA	20	18	16	14	12	10	8	6	4



Spreizung 5 K

Vorlauftemperatur Θ_{v_i} in °C 14 15 16 17 18 19 20 21 22 Kühlleistung Q_{spec} in W/m² R _{X/8} 0,00 m²K/ 26 W(ST) 61 54 47 40 33 26 18 NV 51 45 39 34 28 22 15 NV 39 35 30 26 21 17 12 RA 27 24 21 18 15 12 8 VV(ST) 52 46 40 34 28 22 16 VV(ST) 52 46 40 34 28 22 16 NV 33 38 34 29 24 19 13 RA 23 20 18 15 13 10 7 R _{X/8} 0,10 m²K/ R _{X/8} 0,10 m²K/ VV(ST) 45 40 35 30 25 19 14 VV 38 34 29 25 21 16 11 NV 38 34 29 25 21 16 11 NV 38 34 29 25 21 16 11 NV 29 26 23 19 16 12 9						Kühlmitt	eltempera	atur in °C						
Continue	-f atu	Ε	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5			
Continue	per	stel				Vorlaufte	mperatu	r Θ _{vL} in °C						
Continue	R.	S	14	15	16	17	18	19	20	21	22			
R _{X/8} 0,00 m ² K/ 26	ţ			Kühlleistung Q _{soez} in W/m²										
W(ST) 61 54 47 40 33 26 18 26 W 51 45 39 34 28 22 15 W 39 35 30 26 21 17 12 RA 27 24 21 18 15 12 8 R _{Me} 0,05 m ² K/ 26 W 43 38 34 29 24 19 13 NV 33 30 26 22 18 14 10 RA 23 20 18 15 13 10 7 W(ST) 52 46 40 35 30 26 22 18 RA 23 20 18 15 13 10 7 R _{Me} 0,10 m ² K/ 26 W(ST) 45 40 35 30 25 19 14 W 38 34 29 25 21 16 11 W 38 34 29 25 21 16 11 W 38 34 29 25 21 16 11									F	8,,, 0,00	m²K/W			
26		VV(ST)	61	54	47	40	33	26		К. В.				
NV 39 35 30 26 21 17 12 8					39									
NV(ST) 52 46 40 34 28 22 16 43 43 43 43 44 45 45 45	26	NV		35	30	26	21	17	12					
VV(ST) 52 46 40 34 28 22 16 VV 43 38 34 29 24 19 13 NV 33 30 26 22 18 14 10 RA 23 20 18 15 13 10 7 R _{χx8} 0,10 m²K/ W(ST) 45 40 35 30 25 19 14 W 38 34 29 25 21 16 11 NV 29 26 23 19 16 12 9		RA	27	24	21	18	15	12	8					
26									F	R _{λ'B} 0,05	m²K/W			
26 NV 33 30 26 22 18 14 10 7 RA 23 20 18 15 13 10 7		VV(ST)	52	46	40	34	28	22	16					
NV 33 30 26 22 18 14 10 RA 23 20 18 15 13 10 7 R _{λ/8} 0,10 m ² K/ W/ST) 45 40 35 30 25 19 14 W/ST) 45 40 35 30 25 19 14 W/ST 38 34 29 25 21 16 11 NV 29 26 23 19 16 12 9	26			38	34	29	24	19						
R _{X/8} 0,10 m ² K/ W(ST) 45 40 35 30 25 19 14 VV 38 34 29 25 21 16 11 NV 29 26 23 19 16 12 9	20								10					
26 W(ST) 45 40 35 30 25 19 14 W 38 34 29 25 21 16 11 W 29 26 23 19 16 12 9		RA	23	20	18	15	13	10	7					
26 VV 38 34 29 25 21 16 11									F	R _{λ'B} 0,10	m²K/W			
NV 29 26 23 19 16 12 9		VV(ST)	45	40	35	30	25	19	14					
NV 29 26 23 19 16 12 9	26													
	20													
		RA	20	18	16	13	11	9	6					
R _{λ′B} 0,15 m²K/									F	R _{λ'B} 0,15	m²K/W			
VV(ST) 40 36 31 27 22 17 12		VV(ST)		36	31		22	17	12					
26 W 33 30 26 22 18 14 10	26						18	14						
NV 26 23 20 17 14 11 8	20													
RA 18 16 14 12 10 8 5		RA	18	16	14	12	10	8	5					

Tabelle 11.3 Ermittlung der Kühlleistung in W/m² bei 5 K Spreizung

Unterschreitung Fußbodenoberflächentemperatur von 19 °C

Flächenheizung / Flächenkühlung

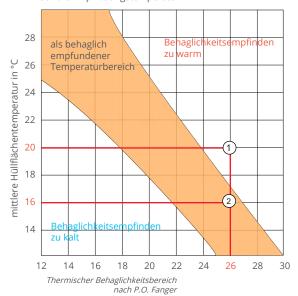
Der Doppelnutzen Heizen/Kühlen

PYD-ALU® FLOOR Nass kann im Winter nicht nur zum Heizen, sondern auch im Sommer zum Kühlen verwendet werden. Es ergibt sich ein Doppelnutzen und weiterer Einsatzbereich. Mit relativ geringem Mehraufwand kann über ein Kälteaggregat oder Energieträger wie Erdwärmetauscher oder Wärmepumpen mit Kühlfunktion Kälte produziert werden und über die Flächenheizung als Kaltwassersatz eingespeist werden. Mit bis zu 55 W/m² Kühlleistung kann mit PYD-ALU® FLOOR Nass eine ähnliche Kühlleistung realisiert werden wie mit Kühldecken aus Gipskarton. Der Kosten – Nutzenfaktor, auch bei der Anschaffung gegenüber anderen Lösungen steigt erheblich.

Gesundheit und Behaglichkeit

Konventionelle Klimaanlagen setzen gekühlte Luft zum Abtransport der Wärmelast ein. Die Luft wird dabei in großen Mengen mit starker Untertemperatur in die Räume eingeblasen. Dadurch kommt es unter Umständen nicht nur zu Einschränkungen in der Behaglichkeit, sondern häufig auch zu gesundheitlichen Beeinträchtigungen. Neben Zugluft-Risiko und Geräuschbelästigungen spielen dabei häufig auch mangelhafte hygienische Verhältnisse im Luftkanalnetz eine Rolle, welche oft auf unzureichende Wartung zurück gehen. Eine Wartung der Heiz- / Kühlflächen ist nicht erforderlich.

Durch die Flächenkühlung geschieht der Wärmeaustausch zwischen Menschen und Kühlflächen überwiegend durch Strahlung und deshalb zugluftfrei. Es gilt als erwiesen, dass es für den menschlichen Körper wohltuend ist, wenn mindestens die Hälfte seiner Wärmeabgabe über die Strahlung reguliert wird.


Wärmehaushalt des Menschen

Fußbodenkühlung sorgt für ein angenehmes Raumklima

Man Spricht von stiller Kühlung ohne Luftverwirbelung und kommt daher Allergikern zugute. Es entsteht auch bei sehr heißen Temperaturen eine angenehme Behaglichkeit, was die untenstehende Grafik verdeutlicht.

Hinzu kommt, dass die Oberflächen durch die optimale Temperaturverteilung ein homogenes Temperaturprofil ohne große Temperatursprünge und Welligkeit aufweisen. Das bedeutet, dass jeder Nutzer exakt identische Bedingungen vorfindet.

Einfluss von gekühlten Raumumschließungsflächen = Hüllflächen (Boden, Wand, Decke) auf die Empfindungstemperatur

- Beispiel: ohne Flächenkühlung Raumtemperatur 26 °C mittlere Hüllflächentemperatur 20 °C wird als zu warm empfunden.
- 2 Beispiel: mit Flächenkühlung Raumtemperatur 26 °C mittlere Hüllflächentemperatur 16 °C Behagliches Raumklima.

PYD-ALU® FLOOR Nass Flächenheizung / Flächenkühlung

Weichenstellung für die Gebäudeklimatisierung

Höchste Anforderungen stellt der Nutzer und/oder Betreiber heute an die Gebäudeklimatisierung und -beheizung. In Sachen Behaglichkeit sind die klassischen Systeme wie statische Heizflächen, Klima- und Lüftungsanlagen schnell erschöpft und nur mit Einschränkungen geeignet. Heute ist es wichtig den zur Verfügung gestellten Platz optimal auszunutzen und den Energieeinsatz so gering wie möglich zu halten. Und das alles bei einem Optimum an Behaglichkeit, Komfort und Nutzerfreundlichkeit. Zur Kälteerzeugung können alternative Energieträger, wie z.B. Erdreichwärmetauscher oder umstellbare Wärmepumpen sowie Kälteaggregate dienen.

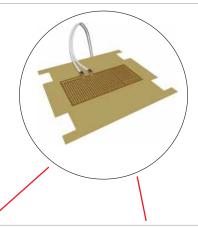
Die Technik der PYD®-THERMOSYSTEME eröffnet hier neue, fast unbegrenzte Möglichkeiten. Pyramidenförmig geprägte Aluminiumleitbleche werden oberflächennah in die Raumumschließungsflächen integriert und mittels Heiz- oder Kühlwasser auf die erforderlichen Temperaturen gebracht. Durch die einzigartige Formgebung wird ein Höchstmaß an Effektivität erreicht, Speichermasse eingespart und wenig Fläche mit wasserführenden Rohren belegt. Dem Nutzer bleibt die Möglichkeit erhalten, auf die Raumtemperatur Einfluss zu nehmen und diese seinen Wünschen anzupassen.

Die Temperaturregulierung durch Wärmestrahlung entspricht den natürlichen Verhältnissen der meisten Lebewesen bei der Anpassung Ihres Wärmehaushaltes. Deshalb wird diese Art der Klimatisierung als äußerst angenehm empfunden. Hierdurch steigen die Leistungsfähigkeit und das Wohlbefinden. Aufgrund der großen aktiven Übertragungsfläche der PYD®-THERMOSYSTEME reichen geringe Temperaturdifferenzen zwischen den aktivierten Raumumschließungsflächen und der Raumluft aus, um große Energiemengen zugfrei und geräuschlos zu übertragen.

Auslegung und Planung

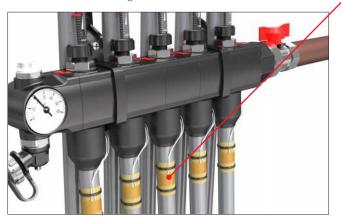
Bei der Auslegung und Planung für Ihren speziellen Anwendungsfall sind wir Ihnen gerne behilflich. Bitte sprechen Sie uns an.

Taupunktunterschreitung

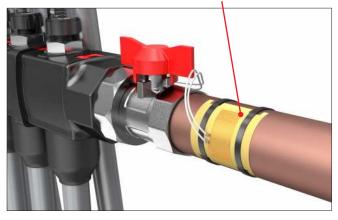

Um die Gefahr der Taupunktunterschreitung und damit verbundenen Kondensatbildung sicher auszuschließen, werden in den einzelnen Regelzonen Taupunktfühler installiert. Wird vom Taupunktfühler Kondensat registriert, wird die Kühlwasserzufuhr zu den aktivierten Flächen unterbrochen, bis eine Kondensatbildung nicht mehr möglich ist.

Der Fall der Taupunktunterschreitung kann jedoch für die Praxis in Bürogebäuden nahezu ausgeschlossen werden, da in Bürogebäuden zur Sicherstellung des Mindestluftwechsels häufig eine Lüftungsanlage eingesetzt wird, die die relative Feuchte der Luft bei für den Nutzer angenehmen 50 % hält. Somit ist ein taupunktsicherer Bereich eingehalten.

Da die Abführung der Kühllasten bei dem erwähnten Anlagenkonzept durch eines der PYD®-THERMOSYSTEME übernommen wird, kann die Lüftungsanlage auf ein Minimum reduziert werden. Somit vermindert sich der Platzbedarf für die Lüftung, Investitionskosten und Betriebskosten sinken.


PYD®-RTKTF Taupunktfühler

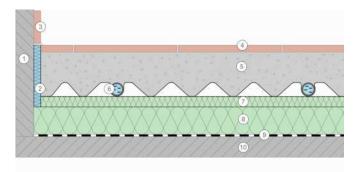
Taupunkt-/Feuchtefühler aus flexibler Folie mit aufgedampftem Leiterbahnmuster zur Überwachung des Taupunktes. Die Leitfähigkeit des Fühlers nimmt bei einer relativen Luftfeuchte von ca. 80...85 % stark zu. Bei einer relativen Luftfeuchte von ca. 98 % hat der Fühler einen Wert von ca. 8 M-Ohm, hier muss der Regler die Kühlung abschalten. Wenn der Widerstand durch Trocknung wieder auf ca. 16 M-Ohm gestiegen ist, muss der Regler die Kühlung wieder aktivieren. Feuchtefühler mit 10 m Zuleitung und Kabelbinder, zur Montage am Rohr oder Verteiler.


Taupunkterfassung pro Raum

Montagebeispiel des PYD®-RTKTF Taupunkt-Feuchtefühler am Vorlauf für eine raumweise Abschaltung bei Kondensatanfall.

Taupunkterfassung pro Zone

Montagebeispiel des PYD®RTKTF Taupunkt-Feuchtefühler am Zulauf für eine zonenweise Abschaltung bei Kondensatanfall.


Fußbodenaufbauten - Planungshilfe

Der Weg ist das Ziel - Eine optimale Planung ist unerlässlich.

Um einen Fußbodenaufbau entsprechend der geplanten Nutzungsart optimal auszuführen, bedarf es einer ausführlichen Planung. Nachfolgend werden einige Details angerissen, die in unseren Planungsgrundlagen ausführlicher behandelt werden.

Der Fußbodenaufbau

- 1) Mauerwer
- 2) PYD®-Randdammstreifen (PE-Schaum, Mineralfaser)
- 3) Sockelleiste
- 4) Bodenbelag
- 5) Estrich gemäß DIN 18560
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte Trittschall
- 8) Wärmedämmung (EPS, Mineralfaser, PU o.ä.)
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden
- **Zu 2)** Der Randdämmstreifen (2) steht auf der obersten Lage Zusatzdämmung (8) auf, so das dieser zwischen Mauerwerk (1) und Systemplatte (7) liegt. Der Randdämmstreifen ist i.d.R. mit einer Folienüberlappung ausgestattet, die auf der Systemplatte aufliegen muss. Bei Verwendung von Fließestrichen muss diese Folie mit der Systemplatte verklebt werden. Der überstehende Randdämmstreifen darf erst nach Verlegung des Bodenbelags (4) entfernt werden.
- **Zu 5)** Der Estrich unterliegt diversen Anforderungen. In der DIN 18560-2 wird vorgegeben, bei welchen Anforderungen, welche Estrichdicke eingehalten werden muss (Siehe Tabelle 15.1). In Verbindung mit der DIN 1991-1-1 wird der entsprechende Estrichaufbau festgelegt. Fließestriche könne von der Norm abweichen, hier sind die Herstellerangaben zu beachten. Auch PYD-Thermosyteme hat geprüfte Systemaufbauten, die einen geringen Estrichaufbau ermöglichen (Siehe Seite 20-23).

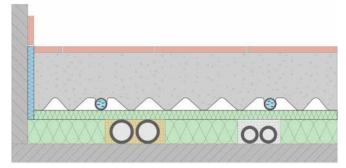
Achtung:

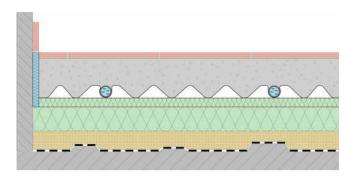
Bei Fließestricharten wie Anhydritestrich (AE), Calciumsulfatestrich (CA/CAF) und Zement-Fließestrich (CTF) müssen zwingend unsere speziell beschichteten Thermoleitbleche verwendet werden. Unbeschichtete Thermoleitbleche können zu einer ungewollten Blasenbildung an der Estrichoberfläche führen.

Zu 7) Wenn die Systemplatte als Trittschalldämmung ausgeführt wird, ist es zwingend erforderlich, dass diese durchgehend verlegt wird. Eine Unterbrechung der Trittschalldämmung oder gar das durchstoßen mittels Rohrleitungen hat einen negativen Effekt auf die Trittschalleigenschaften. Ein optimaler Trittschall kann somit nicht mehr garantiert werden.

Zu 8) Die Zusatzwärmedämmung kann je nach Fußbodenaufbauhöhe in 1 - 2 Lagen ausgeführt werden. Mehr als 2 Lagen und Plattendicken über 60 mm sind aus Sicht der Verarbeitung nicht zu empfehlen, hier sollte eine als Ausgleich der restlichen Höhe eine gebundene Schüttung verwendet werden.

Auf dem Rohboden verlaufende Leitungen sollten vermieden werden. Da dies aber in der Praxis oft nicht machbar ist, müssen die Rohrleitungen auf den Bodenaufbau abgestimmt werden. Wie im Punkt davor beschrieben, darf die Trittschalldämmebene nicht unterbrochen werden, d.h. Rohrleitungen auf dem Rohboden dürfen maximal bis Oberkante der obersten Lage Zusatzwärmedämmung gehen. Die Vorgabe im BEB Arbeitsblatt 4.6 sind zu beachten.

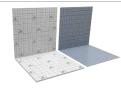

Zu 9) Die Feuchtigkeitssperre ist gemäß DIN 18195 auf einem erdreichberührte Rohboden zu verlegen.


Zu 10) Bei Ausführung ist die DIN 18202 "Maßtoleranzen im Hochbau zu beachten. Für die Aufnahme der Dämmschicht, jedoch mindestens der Trittschalldämmung, muss durch einen Ausgleich die Ebenheit der Oberfläche hergestellt werden. Die dazu erforderliche Konstruktionshöhe ist einzuplanen.

Für den Ausgleich muss zwingend eine gebundene Schüttung verwendet werden.

Zu 4) Der Bodenbelag kann in Art und Stärke variieren und muss entsprechend eingerechnet werden. Der Bodenbelag muss für Fußbodenheizungen geeignet sein, d.h. der Wärmeleitwiderstand darf 0,15 m²K/W nicht übersteigen. Bei Verwendung von Holzböden ist unabhängig vom Hersteller zu klären, ob eine gesonderte Oberflächentemperatur, abweichend von der DIN EN 1264 eingehalten werden muss.

Fußbodenaufbauten - Planungshilfe


Mindestüberdeckung gem. DIN 18560-2

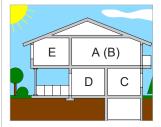
		Estrichgüte gem. DIN EN 13813									
Flächenlast	Zemente	estrich CT	Calciumsulf	fatestrich CA	Calciumsulfat-Fließestrich CAF						
Flatflefflast	F4	F5	F4 F5		F4	F5					
	Überdeckung										
kN/m²	mm	mm	mm	mm	mm	mm					
≤ 2,0	≥ 45	≥ 40	≥ 45	≥ 40	≥ 35	≥ 35					
≤ 3,0	≥ 65	≥ 55	≥ 65	≥ 55	≥ 50	≥ 45					
≤ 4,0	≥ 70	≥ 60	≥ 70	≥ 60	≥ 60	≥ 50					
≤ 5,0	≥ 75	≥ 65	≥ 75	≥ 65	≥ 65	≥ 55					

Tabelle 15.1

Trittschalldämmung

PYD®-Thermosysteme bietet eine Vielzahl an Trittschalldämmplatten an, die für jede Anforderung geeignet sind. Unsere Systemplatten sind mit einer reißfesten und wasserdichten Gewebebeschichtung ausgestattet. Bei hohen Anforderungen an den Trittschall oder in besonderen Vorgaben beim Brandschutz kann auch eine bauseitige Mineralfaserdämmung in Verbindung mit unserer PYD®-HKP Hohlkammer-Verlegeplatte verwendet werden.

Unterschied im Schallschutz zwischen EPS DES und Mineralwolle gemäß DIN 4109 Beiblatt 1


			EPS	DES		Mineralwolle 1)				
				Trittschallve	Trittschallverbesserung			Trittschallve	erbesserung	
Dämmstärke	Nutzlast	Zusammen- drückbarkeit	Dyn. Steifigkeit	Bodenbelag Hart	Bodenbelag Weichfedernd	Zusammen- drückbarkeit	Dyn. Steifigkeit	Bodenbelag Hart	Bodenbelag Weichfedernd	
mm	kN	mm	MN/m³	dB	dB	mm	MN/m³	dB	dB	
15	≤ 3,5	2	30	26	27	5	15	29	33	
20	≤ 3,5	2	20	28	30	5	10	30	34	
25	≤ 3,5	2	20	28	30	5	10	30	34	
30	≤ 3,5	3	15	29	33	5	7	30	34	
20	≤ 5	2	30	26	27	3	30	26	27	
30	≤ 5	2	20	28	30	3	15	29	33	

¹⁾ Herstellerangaben sind zu berücksichtigen Tabelle 15,2

Wärmedämmung

Gemäß EneV §7 ist bei zu errichteten Gebäuden der Mindestwärmeschutz der Bauteile einzuhalten. Dieser Mindestwärmeschutz ist für Flächenheizungen in der DIN EN 1264 beschrieben und nachfolgend dargestellt.

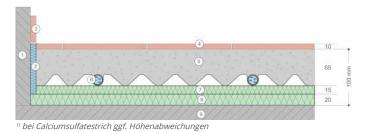
Mindestwärmeschutz entsprechend der DIN EN 1264-4 bzw. den anerkannten Regeln der Technik nach der EnEV.

Mindest	wärmeleitwid	erstände der Dämmschichten unter der Fußbodenheizung (DIN EN 1264-4)	[m²K/W]				
Α	A Darunter liegender gleichartig beheizter Raum						
BCD	Unbeheizter, ungleichartig beheizter oder in Abständen beheizter darunter liegender Raum oder direkt auf dem Erdreich (Grundwasser > 5 m) ¹⁾						
Е	Außenluft Auslegungstemperatur ≥ 0° C						
		Auslegungstemperatur < 0° C; ≥ -5° C	1,50				
		Auslegungstemperatur < -5° C; ≥ -15° C	2,00				

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Die auf den folgenden Seiten beschriebenen Fußbodenaufbauten beziehen sich, bis auf wenige Ausnahmen, auf den Mindestwärmeschutz für die Raumtypen A und B (C, D). Die Aufbauten sind nur Beispiele und können je nach Anforderung angepasst werden.

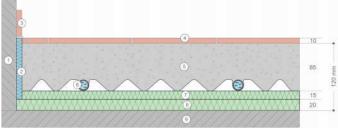
Fußbodenaufbauten nach DIN 18560 Raumtyp A


Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Zement- oder Calciumsulfatestrich	Raumtyp A	$R_{\lambda} \ge 0.75 \text{ m}^2\text{K/W}$
Nutzlast ≤ 2kN/m²	Zusammendrückbarkeit Dämr	mschicht c ≤ 5 mm

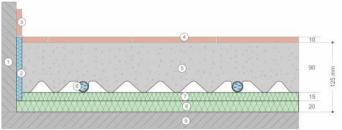


- 1) Mauerwer
- 2) PYD®-Randdämmstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; Rλ= 0,33 m²K/W
- 8) EPS 040 DEO Zusatzdämmung 20 mm WLG 040; R λ = 0,50 m 2 K/W
- 9) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp A $R_{\lambda} \ge 0.75 \text{ m}^2 \text{K/W}$

Flächenlast ≤ 3kN/m² Einzellast bis 2,0 kN

Zusammendrückbarkeit Dämmschicht c ≤ 5 mm

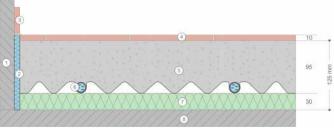

1) bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) PYD®-Randdämmstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; R\= 0,33 m²K/W
- 8) EPS 040 DEO Zusatzdämmung 20 mm WLG 040; R λ = 0,50 m 2 K/W
- 9) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp A $R_i \ge 0.75 \text{ m}^2\text{K/W}$

Flächenlast ≤ 4kN/m² Einzellast bis 3,0 kN

Zusammendrückbarkeit Dämmschicht c ≤ 3 mm


1) bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) PYD®-Randdämmstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; Rλ= 0,33 m²K/W
- 8) EPS 040 DEO Zusatzdämmung 20 mm WLG 040; R λ = 0,50 m 2 K/W
- 9) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp A $R_{\lambda} \ge 0.75 \text{ m}^2 \text{K/W}$

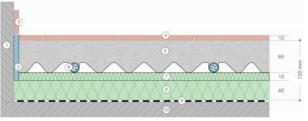
Flächenlast ≤ 5kN/m² Einzellast bis 4,0 kN

Zusammendrückbarkeit Dämmschicht c \leq 3 mm

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) PYD®-Randdämmstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 30-2 WLG 045; R λ = 0,75 m²K/W
- 8) Rohboden

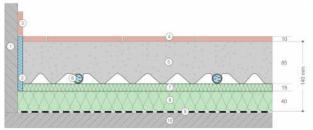
Fußbodenaufbauten nach DIN 18560 Raumtyp B, C, D


Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Zement- oder CalciumsulfatestrichRaumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2 \text{K/W}$ Nutzlast $\le 2 \text{kN/m}^2$ Zusammendrückbarkeit Dämmschicht c $\le 5 \text{ mm}$

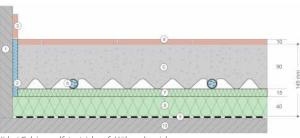

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich1) gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; R_{λ} = 0,33 m²K/W
- 8) EPS 040 DEO Wärmedämmung 40 mm WLG 040; R_{λ} = 1,00 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

$\mbox{Zement- oder Calciumsulfatestrich} \mbox{Raumtyp B, C, D} \mbox{$R_{\lambda} \geq 1,25$ m2K/W} \label{eq:calciumsulfatestrich}$

Flächenlast ≤ 3kN/m² Einzellast bis 2,0 kN

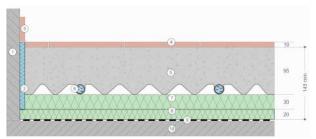
Zusammendrückbarkeit Dämmschicht c ≤ 5 mm


¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; R_{λ} = 0,33 m²K/W
- 8) EPS 040 DEO Wärmedämmung 40 mm WLG 040; $\rm R_{\lambda}$ = 1,00 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2\text{K/W}$

Flächenlast ≤ 4kN/m² Einzellast bis 3,0 kN


Zusammendrückbarkeit Dämmschicht c ≤ 3 mm

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

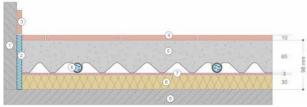
- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; R_{λ} = 0,33 m²K/W
- 8) EPS 040 DEO Wärmedämmung 40 mm WLG 040; $\rm R_{\lambda}^{=}$ 1,00 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Zement- oder CalciumsulfatestrichRaumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2 \text{K/W}$ Flächenlast $\le 5 \text{kN/m}^2$ Einzellast bis 4,0 kNZusammendrückbarkeit Dämmschicht c $\le 3 \text{ mm}$

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 30-2 WLG 040; R_s= 0,75 m²K/W
- 8) EPS 040 DEO Wärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Fußbodenaufbauten nach DIN 18560 Erhöhter Schall- und Brandschutz / Raumtyp A

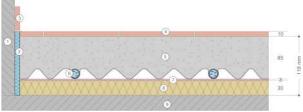

Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

					Mindestwärmeleitwiderstände der Dämmschichten unter der Fußbodenheizung (DIN EN 1264-4)				
					Darunter lie	Darunter liegender gleichartig beheizter Raum			
E	E A (B)				den beheizt	r, ungleichartig beheizter oder in Abstän- er darunter liegender Raum oder direkt dreich (Grundwasser > 5 m) ¹⁾	1,25		
	D C			Е	Außenluft	Auslegungstemperatur ≥ 0° C	1,25		
						Auslegungstemperatur < 0° C; ≥ -5° C	1,50		
						Auslegungstemperatur < -5° C; ≥ -15° C	2,00		

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Zement- oder Calciumsulfatestrich	Raumtyp A $R_{\lambda} \ge 0.75 \text{ m}^2\text{K/W}$
Nutzlast ≤ 2kN/m²	Zusammendrückbarkeit Dämmschicht c \leq 5 mm
INT	

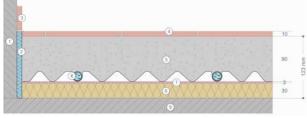

1) bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwei
- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-5 mm WLG 035; R_{χ} = 0,86 m²K/W
- 9) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp A $R_{\lambda} \ge 0,75 \text{ m}^2 \text{K/W}$

Flächenlast ≤ 3kN/m² Einzellast bis 2,0 kN

Zusammendrückbarkeit Dämmschicht c ≤ 5 mm

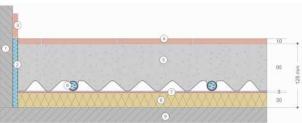

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-5 mm WLG 035; R_{λ} = 0,86 m²K/W
- 9) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp A $R_{\lambda} \ge 0.75 \text{ m}^2 \text{K/W}$

Flächenlast ≤ 4kN/m² Einzellast bis 3,0 kN

Zusammendrückbarkeit Dämmschicht c \leq 3 mm


1) bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-3 mm WLG 035; R_{λ} = 0,86 m²K/W
- 9) Rohboden

Zement- oder Calciumsulfatestrich Raumtyp A $R_s \ge 0.75 \text{ m}^2 \text{K/W}$

Flächenlast ≤ 5kN/m² Einzellast bis 4,0 kN

Zusammendrückbarkeit Dämmschicht c ≤ 3 mm

bei Calciumsulfatestrich ggf. Höhenabweichungen

- 1) Mauerwerk
- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD^{\otimes} -HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-3 mm WLG 035; R_{λ} = 0,86 m²K/W
- 9) Rohboden

Fußbodenaufbauten nach DIN 18560 Erhöhter Schall- und Brandschutz / Raumtyp B, C, D

Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Zement- oder Calciumsulfatestrich Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2 \text{K/W}$

Nutzlast ≤ 2kN/m²

0 10 0 65 E

Mauerwerk
 Mineralfase

- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-5 mm WLG 035; R_{λ} = 0,86 m²K/W

Zusammendrückbarkeit Dämmschicht c ≤ 5 mm

- 9) Mineralfaserwärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 10) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)

Raumtyp B, C, D

Raumtyp B, C, D

Raumtyp B, C, D

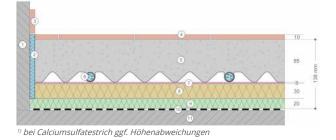
Zusammendrückbarkeit Dämmschicht c ≤ 3 mm

Zusammendrückbarkeit Dämmschicht c ≤ 3 mm

Zusammendrückbarkeit Dämmschicht c ≤ 5 mm

 $R_{\lambda} \ge 1,25 \text{ m}^2\text{K/W}$

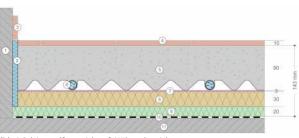
 $R_{\lambda} \ge 1,25 \text{ m}^2\text{K/W}$


 $R_3 \ge 1,25 \text{ m}^2\text{K/W}$

11) Rohboden

Zement- oder Calciumsulfatestrich

1) bei Calciumsulfatestrich ggf. Höhenabweichungen


Flächenlast ≤ 3kN/m² Einzellast bis 2,0 kN

-) Mauenwerk
- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-5 mm WLG 035; R_{λ} = 0,86 m²K/W
- 9) Mineralfaserwärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 10) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 11) Rohboden

Zement- oder Calciumsulfatestrich

Flächenlast ≤ 4kN/m² Einzellast bis 3,0 kN

1) bei Calciumsulfatestrich ggf. Höhenabweichunger

- 1) Mauerwerk
- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹⁾ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-5 mm WLG 035; R_{λ} = 0,86 m²K/W
- 9) Mineralfaserwärmedämmung 20 mm WLG 040; R $_{\lambda}$ = 0,50 m 2 K/W
- 10) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 11) Rohboden

Zement- oder Calciumsulfatestrich

Flächenlast ≤ 5kN/m² Einzellast bis 4,0 kN

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

1) Mauerwerk

- 2) Mineralfaser-Randdämmstreifen mit Folienüberlappung
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Estrich¹¹ gem. DIN 18560, im Beispiel CT-F4
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-HKP Hohlkammer-Verlegeplatte 3 mm
- 8) Trittschall-Mineralfaserdämmung 30-5 mm WLG 035; R_{λ} = 0,86 m²K/W
- 9) Mineralfaserwärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 10) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 11) Rohboden

Fußbodenaufbauten mit geringer Estrichdicke Für bis zu 8 kN/m² - Systemgeprüft

Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Geprüfter dünnschichtiger Aufbau? Hohe Nutzlasten? Gesteigerte Heiz- und Kühlleistung? Aber natürlich!

Speziell geprüfte Systemaufbauten ermöglichen eine geringe Estrichüberdeckung in Verbindung mit hohen Nutzlasten. Eine Zulassung, wie sie die DIN 18560 fordert, liegt durch eine Prüfung der Materialprüfanstalt KIWA Augsburg vor.

Durch die Zugabe von PYD®-ST Stahlfasern und bestimmten PYD®-Estrichzusatzmitteln vergrößert sich nicht nur die Festigkeit, sondern auch die Leitfähigkeit des Estrichs und ermöglicht so eine höhere Heiz- und Kühlleistung.

Geprüfte Aufbauten

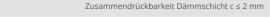
Prüfaufbau	Flächenlast kN/m²	Rohrüberdeckung mm	Estrichzusatzmittel	Zulassung für Stein- und keramische Böden
PYD02	≤ 5	30	PYD®-EZSS	ja
PYD02	≤ 8	45	PYD®-EZSS	ja
PYD03	≤ 5	20	PYD®-EZSS	nein
PYD05	≤ 5	30	PYD®-EZ	nein
PYD05	≤ 8	45	PYD®-EZ	nein

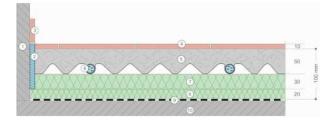
Mörtelzusammensetzung und Eigenschaften des Frischmörtels

Zementestrich: CT C 35-F5

Zement: CEM I 42,5 N

Korngruppe (nach DIN 1045 - Sieblinie A/B): 0/8 mm

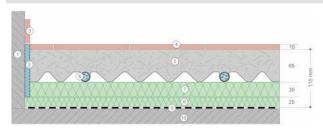

Prüfaufbau	Zementgehalt kg/m³	Wasser-Zement Wert	Gesteinskörnungs- menge kg/m³	Menge Estrichzusatz % vom Zementge- wicht	Menge Stahlfasern kg/m³	Ausbreitmaß cm	Luftporengehalt %
PYD02	320	0,49	1680	8-10	50	13,2	+2,6
PYD03	320	0,49	1680	8-10	60	13,2	+2,6
PYD05	300	0,5	1700	8	50	13,2	+4,2


Fußbodenaufbauten

Übersichtshalber werden nur die Aufbauten für den Raumtyp B, C, D dargestellt. Für den Raumtyp A kann die Dämmung entsprechend angepasst werden.

Prüfaufbau 02 Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2 \text{K/W}$

Flächenlast ≤ 5kN/m² Einzellast bis 4,0 kN



- 1) Mauerwerk
- 2) PYD-Randdämmstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Zementestrich CT-C35-F5 mit PYD®-EZSS und PYD®-Stahlfasern
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 30-2 WLG 040; R_{λ} = 0,75 m²K/W
- 8) EPS 040 DEO Wärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Prüfaufbau 02 Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2 \text{K/W}$

Flächenlast ≤ 8kN/m² Einzellast bis 7,0 kN

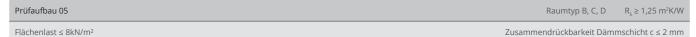
Zusammendrückbarkeit Dämmschicht c ≤ 2 mm

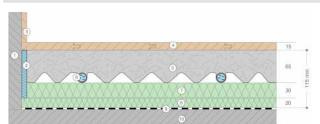
- I) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Zementestrich CT-C35-F5 mit PYD®-EZSS und PYD®-Stahlfasern
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 30-2 10 kPA WLG 040; R_x= 0,75 m²K/W
- 8) EPS 040 DEO Wärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Fußbodenaufbauten mit geringer Estrichdicke Für bis zu 8 kN/m² - Systemgeprüft

Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.


				Mindestwärmeleitwiderstände der Dämmschichten unter der Fußbodenheizung (DIN EN 1264-4)			
		Α	Darunter liegender gleichartig beheizter Raum		0,75		
E	E A (B)			B C D	Unbeheizte den beheizt auf dem Erc	1,25	
	ט	C	1	Е	E Außenluft Auslegungstemperatur ≥ 0° C		
					Auslegungstemperatur < 0° C; ≥ -5° C	1,50	
						Auslegungstemperatur < -5° C; ≥ -15° C	2,00


¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Prüfaufbau 03	Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2\text{K/W}$
Flächenlast ≤ 5kN/m² Einzellast bis 4,0 kN	Zusammendrückbarkeit Dämmschicht c ≤ 2 mm
1) bei Calciumsulfatestrich ggf. Höhenabweichungen	 Mauerwerk PYD®-Randdämmstreifen Sockelleiste Bodenbelag (kein Stein- oder keramischer Boden zugelassen) Zementestrich CT-C35-F5 mit PYD®-EZSS und PYD®-Stahlfasern PYD-ALU® Thermoleitblech mit PYD®-Systemrohr PYD®-Systemplatte 20-2 5 kPA WLG 040; R_x= 0,50 m²K/W EPS 040 DEO Wärmedämmung 30 mm WLG 040; R_x= 0,75 m²K/W Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
Prüfaufbau 05	Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2\text{K/W}$
Flächenlast ≤ 5kN/m² Einzellast bis 4,0 kN	Zusammendrückbarkeit Dämmschicht c ≤ 2 mm
0 15 15 50 WE 000	 Mauerwerk PYD®-Randdammstreifen Sockelleiste Bodenbelag (kein Stein- oder keramischer Boden zugelassen) Zementestrich CT-C35-F5 mit PYD®-EZ und PYD®-Stahlfasern PYD®-ALU Thermoleitblech mPVB®-Systemrohr

¹⁾ bei Calciumsulfatestrich ggf. Höhenabweichungen

- 7) PYD®-Systemplatte 30-2 WLG 040; R_{λ} = 0,75 m²K/W
- 8) EPS 040 DEO Wärmedämmung 20 mm WLG 040; R₃= 0,50 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

1) bei Calciumsulfatestrich ggf. Höhenabweichungen

- 2) PYD®-Randdammstreifen
- 3) Sockelleiste
- 4) Bodenbelag (kein Stein- oder keramischer Boden zugelassen)
- 5) Zementestrich CT-C35-F5 mit PYD®-EZ und PYD®-Stahlfasern
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 30-2 10 kPA WLG 040; R_{λ} = 0,75 m²K/W
- 8) EPS 040 DEO Wärmedämmung 20 mm WLG 040; R_{λ} = 0,50 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Fußbodenaufbauten Sonderkonstruktionen Mit Knauf 440 - Systemgeprüft

Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

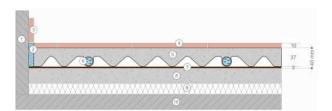
¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Rationelle Sanierung mit 4 cm Estrichdicke

Mit Knauf Fließestrich N 440 zur Dünnschichtfußbodenheizung

Der Fußbodenaufbau bestimmt wesentlich die Qualität einer Wohnung oder eines Gebäudes. Er bildet die Grundlage für einen optimalen Schallschutz, Wärmeschutz, Brandschutz und Feuchteschutz, sowie die Voraussetzung für guten Gehkomfort und ein behagliches Wohnklima. Die Qualität von Bodensystemen kommt erst durch das Zusammenwirken mit mehreren Faktoren zur Wirkung. Materialqualität, Ausführung und Konstruktion müssen stimmen und aufeinander abgestimmt sein.

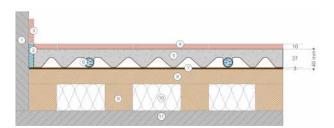
Ein bestehender, tragfähiger Estrich kann mit geringem Aufwand mit dem Knauf Nivellierestrich N 440 und der PYD-ALU FLOOR Nass Fußbodenheizung / -kühlung nachgerüstet werden. Durch die geringe Estrichdicke, hohe Wärmeleitfähigkeit und einer sehr guten Rohrumschließung entsteht ein schnell reagierender Knauf Heizestrich mit kurzen Aufheizzeiten. Das Bindemittel Calciumsulfat sorgt für ein schnelles und schwindarmes Erhärten und für eine schnelle Trocknung. Er ist begehbar nach ca. 5h und belegreif nach 8-12 Tagen. Einsatzgebiete sind z.B. Wohngebäude, Bürogebäude und Arztpraxen bis zu einer Flächenlast von 3 kN/m² und Einzellasten von 2 kN.


Der Knauf Fließestrich N 440 ist bauseits zu beziehen. Die Herstellerangaben von Knauf sind zwingend zu beachten. Maximale Estrichdicke ist 40 mm.

Altbausanierung auf vorhandenem Estrich oder Dielung

Flächenlast ≤ 3kN/m² Einzellast bis 2,0 kN

Zusammendrückbarkeit Dämmschicht c \leq 2 mm



- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Knauf Calciumsulfatestrich N 440 CA-C25-F6 nach EN 13813
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Korkschrotmatte 3 mm, WLG 045
- 8) Vorhandener Estrich
- 9) Vorhandene Dämmung
- 10) Rohboden

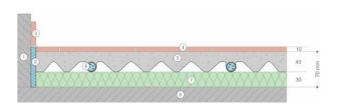
Altbausanierung auf vorhandenem Estrich oder Dielung

Flächenlast ≤ 3kN/m² Einzellast bis 2,0 kN

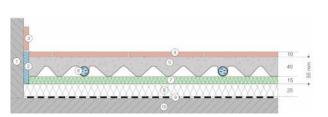
Zusammendrückbarkeit Dämmschicht c \leq 2 mm

- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Knauf Calciumsulfatestrich N 440 CA-C25-F6 nach EN 13813
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Korkschrotmatte 3 mm, WLG 045
- 8) Vorhandene Dielung
- 9) Vorhandene Balken
- 10) Vorhandene Dämmung
- 11) Rohdecke

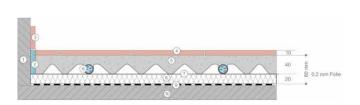
Fußbodenaufbauten Sonderkonstruktionen Mit Knauf 440 - Systemgeprüft


Die aufgeführten Fußbodenaufbauten sind nur Beispiele und können je nach verwendeter Dämmung, geforderten U-Wert oder geplanter Estrichgüte variieren.

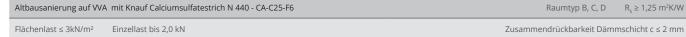
Die Vorgaben der DIN 18560 in ihrer aktuellsten Fassung und/oder Herstellerangaben sind zu beachten.

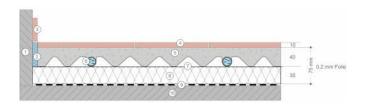

¹⁾ Bei Grundwasserspiegel < 5 m sollte ein höherer R-Wert angesetzt werden.

Knauf Calciumsulfatestrich N 440 - CA-C25-F6		Raumtyp A	$R_{\lambda} \ge 0.75 \text{ m}^2\text{K/W}$
Flächenlast ≤ 3kN/m²	Einzellast bis 2,0 kN	Zusammendrückbarkeit Däm	mschicht c ≤ 2 mm


- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Knauf Calciumsulfatestrich N 440 CA-C25-F6 nach EN 13813
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 30-2 WLG 040; R_{λ} = 0,75 m²K/W
- 8) Rohboden

Knauf Calciumsulf	fatestrich N 440 - CA-C25-F6	Raumtyp B, C, D $R_{\lambda} \ge 1,25 \text{ m}^2 \text{K/A}$
Elächonlast < 2kN	/m² Finzollast his 2.0 kN	7usammondrückharkoit Dämmschicht c < 2 mr




- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Knauf Calciumsulfatestrich N 440 CA-C25-F6 nach EN 13813
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PYD®-Systemplatte 15-2 WLG 045; R_{λ} = 0,33 m²K/W
- 8) PUR WLG 025 Wärmedämmung 25 mm; R_{λ} = 1,00 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

Knauf Calciumsulfatestrich N 440 - CA-C25-F6 Raumtyp A $R_{\lambda} \ge 0.75 \text{ m}^2 \text{K/W}$ Flächenlast $\le 3 \text{kN/m}^2$ Einzellast bis 2,0 kN Zusammendrückbarkeit Dämmschicht c $\le 2 \text{ mm}$

- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Knauf Calciumsulfatestrich N 440 CA-C25-F6 nach EN 13813
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PE-Folie 0,2 mm
- 8) PUR WLG 025 Wärmedämmung alukaschiert 20 mm; R_{λ} = 0,80 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

- 1) Mauerwerk
- 2) PYD®-Randdammstreifen
- 3) Sockelleiste (Fliesen)
- 4) Bodenbelag (Fliesen)
- 5) Knauf Calciumsulfatestrich N 440 CA-C25-F6 nach EN 13813
- 6) PYD-ALU® Thermoleitblech mit PYD®-Systemrohr
- 7) PE-Folie 0,2 mm
- 8) PUR WLG 025 Wärmedämmung alukaschiert 35 mm; R_{λ} = 1,40 m²K/W
- 9) Feuchtigkeitssperre DIN 18195 (gegen erdreichberührende Bauteile)
- 10) Rohboden

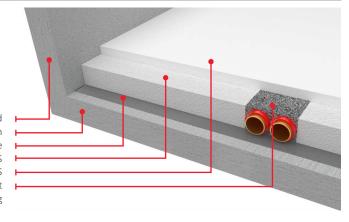
PYD-Thermosysteme GmbH Am Pfaffenkogel 11 D-83483 Bischofswiesen

Tel. +49 8652 9466-0 Fax +49 8652 9466-17

info@pyd.de www.pyd.de

PYD-Thermosysteme GmbHAm Pfaffenkogel 11
D-83483 Bischofswiesen

Tel. +49 8652 9466-0 Fax +49 8652 9466-17


info@pyd.de www.pyd.de

Voraussetzung für die Montage:

- Der vorhandene Untergrund ist eben, sauber, trocken und tragfähig.
- Die baulichen Gegebenheiten und der Verlegeplan stimmen überein.
- Die Zusatzwärme- bzw. Ausgleichsdämmung ist nach EnEV eingebracht und ordnungsgemäß verlegt.
- Rohrleitungen auf dem Rohboden wurden gemäß DIN / BEB Arbeitsblatt 4.6 ausgeführt
- Es ist geklärt, ob Zement- oder Calciumsulfatestrich eingesetzt wird.
 Achtung: Bei Calciumsulfatestrich können nur schwarz beschichtete Thermoleitbleche und Umlenkbögen verwendet werden.

Wand Rohboden Feuchtigkeitssperre Wärmedämmung z.B. EPS Wärmedämmung z.B. EPS Rohrleitungen isoliert auf Rohboden in Schüttung

Benötigtes Werkzeug / Unterlagen:

Rohrschneideschere

Scharfes Messer

evtl. RVH Rohrverlegehaspel

Ringmaulschlüssel NW 30 / 27 mm

PYD-SCWT Systemclipwerkzeug

Rohrringzusammenstellung

Verlegeplan

Benötigtes Material

Randdämmstreifen

Pressverbinder

Umlenkbogen

Dämmverbinder

Thermoleitblech

Klebeband

Thermoleitblech Halb

Systemrohr

Systemclip

Adapter

Verlegewinkelrohr

Isoliertülle

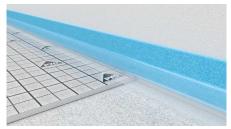
Schutzrohr

Dehnungsfugenprofil

Estrichmessstelle

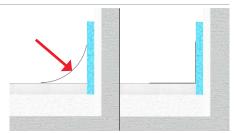
1. Aufstellen des Randdämmstreifens

Der PYD®-Randdämmstreifen wird komplett an allen aufragenden Bauteilen aufgestellt und am Putz befestigt. Die Folienschürze zeigt dabei in den Raum.

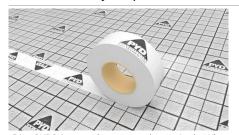


Die Befestigung des PYD®-Randdämmstreifens sollte im Bereich der Trittschalldämmung erfolgen um Schallübertragungen zu vermeiden.

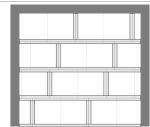
In den Ecken muss besonders darauf geachtet werden, dass der Randdämmstreifen sauber eingearbeitet wird und sich der Ecke optimal annasst


2. Verlegen der Systemplatte

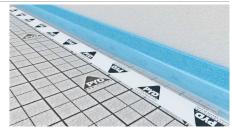
Anschließend werden die PYD®-Systemplatten nach nebenstehendem Schema verlegt.



Durch intelligentes Verlegen und Zuschneiden wird eine optimale Materialausnutzung erreicht.

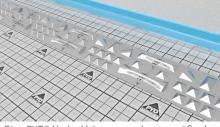


Der Folienflansch des Randdämmstreifens wird auf der Systemplatte ausgerichtet, so dass keine Spannung entsteht und mit dem werkseitigen Klebestreifen fixiert.

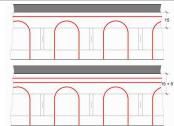

3. Verkleben der Systemplatte

Die PYD®-Systemplatten werden mittels Kle beband an den Stoßkanten sauber verklebt.

Es muss darauf geachtet werden, dass jeder Stoß verklebt wird, da sonst durch einfließendes Estrichwasser Schallbrücken entstehen können.



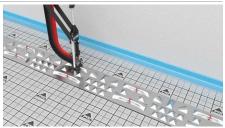
Achtung: Wird Calciumsulfatestrich eingesetzt, muss der Folienflansch des Randdämmstreifens spannungsfrei und vollständig mit der Systemplatte verklebt werden. Der PYD®-RDFK Randdämmstreifen ist dafür werkseitig mit einem Klebestreifen ausgestattet.


4. Ausrichten und Verbinden der Umlenkbleche

Die PYD®-Umlenkbögen verfügen über vorgestanzte Laschen, die genau vorgeben, wie die Bögen untereinnander verbunden werden müssen.

Die PYD®-Umlenkbögen werden gemäß der geplanten Verlegung, dargestellt im Verlegeplan, im Raum ausgerichtet.

Die Umlenkbleche werden mit einem Abstand von 15 cm zum aufragenden Bauteilen, gemessen von der Oberkante des Blechs gesetzt. Der Abstand ist ausreichend, um eine Zuleitung mit einem Abstand von 5 cm vorbei zu führen. Bei zwei oder mehr Zuleitungen müssen jeweils 5 cm Abstand dazu addiert werden.


5. Befestigung der Umlenkbleche

Nach dem Ausrichten werden die beiden ausgestanzten Laschen umgebogen bis sie auf dem PYD®-Umlenkbogen aufliegen.

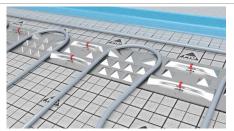
Anschließend werden die PYD®-Umlenkbögen an den Überlappungen und den hierfür ausgestanzten Bereichen mit PYD®-Systemclips...

 \dots durch das PYD $^{\!\! \circ}\textsc{-Systemclipwerkzeug}$ auf der Faltplatte fixiert.

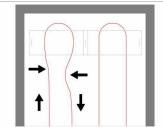
6. Anschluss Vorlauf am Heizkreisverteiler

Zur spannungsfreien Anbindung des PYD®-Systemrohres an den PYD®-Heizkreisverteiler wird es durch den PYD®-Verlegewinkel geschoben und auf die exakte Länge gekürzt.

Die PYD®-HVI Isoliertülle * und der PYD®-AD20 Adapter werden nacheinander auf das Systemrohr geschoben und befestigt.



Der PYD®-AD20 Adapter wird am Gewinde des Vorlaufs angesetzt und die Überwurfmutter mit einem Ringmaulschlüssel vorsichtig angezogen.


7. Montieren des Systemrohres

Das Abrollen erfolgt von Hand oder mit Hilfe der PYD®-Rohrverlegehaspel. Das PYD®-Systemrohr wird wie oben abgebildet über den PYD®-Umlenkbogen geführt.

Damit das PYD®-Systemrohr ordentlich im Raum liegt, muss es bei der Verlegung nachgespannt werden.

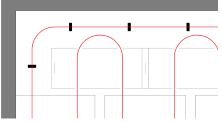
Zum Nachspannen des PYD®-Systemrohres wird dieses ca. 20 cm vor dem Bogen zusammen gedrückt und so weit über den PYD®-Umlenkbogen geschoben / gezogen bis das PYD®-Systemrohr gerade ist und auf der PYD®-Systemplatte aufliegt.

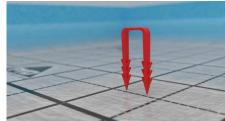
8. Anschluss Rücklauf am Heizkreisverteiler

Zur spannungsfreien Anbindung des PYD®-Systemrohres an den PYD®-Heizkreisverteiler wird es durch den PYD®-Verlegewinkel geschoben und auf die exakte Länge gekürzt.

Die PYD®-HVI Isoliertülle* und der PYD®-AD20 Adapter werden nacheinander auf das Systemrohr geschoben und befestigt.

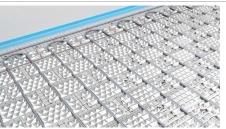
* nur bei Fußbodenkühlung


Der PYD®-AD20 Adapter wird am Gewinde des Rücklaufs angesetzt und die Überwurfmutter mit einem Ringmaulschlüssel vorsichtig angezogen.


9. Befestigung der Anbindeleitungen

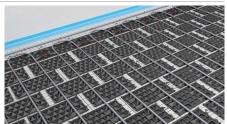
Die Anbindeleitungsführung ist im Verlegeplan vorgegeben.

Die Anbindeleitungen werden mit PYD®-Systemclips und dem PYD®- Systemclipwerkzeug alle 0,5 m auf der PYD®-Systemplatte fixiert.

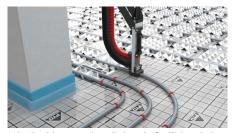


Falls sich die PYD®-Systemplatten durch Spannung nach oben biegen, werden nach Bedarf die PYD®-Dämmverbinder durch die PYD®-Systemplatte in die Zusatzdämmung gedrückt. Ohne verfügbare Zusatzdämmung können auch geeignete Kunststoffdübel verwendet werden.

10. Verlegen der Thermoleitbleche



Es werden jetzt die PYD-ALU® Thermoleitbleche verlegt. Hierzu wird das PYD®-Systemrohr leicht angehoben, das PYD-ALU® Thermoleitblech darunter geschoben und das PYD®-Systemrohr in die vorgesehene Rille des PYD-ALU® Thermoleitbleches gedrückt.


Die Blechreihen müssen versetzt verlegt werden um Stabilität zu gewährleisten.

Achtung: Bei Verwendung von Fließestrichen müssen zwingend schwarz beschichtete Bleche verwendet werden!

11. Anschlussbefestigung der Rohrleitungen

Als Abschluss werden alle lose befindlichen Rohrleitungen mit dem PYD®-Systemclipwerkzeug an der PYD®-Systemplatte befestigt. Das PYD®-Systemrohr wird alle 0,50 m befestigt.

Beim PYD®-Umlenkbogen werden beide Leitungen sowie der Bogen mit einem PYD®-Systemclip fixiert.

Bei Zementestrich muss nach jedem zweiten Blech getackert werden.

Achtung: Bei Verwendung von Blechen mit schwarzer Beschichtung und Fließestrich müssen bei Verlegung der Systemart VV nach jedem Blech PYD-Systemclips gesetzt werden. Andernfalls muss maximal alle 50 cm ein Clip gesetzt werden.

12. Schutzrohr / Dehnfugenprofile / Estrichmesstelle

Sobald eine Zuleitung eine geplante Dehnfuge kreuzt muss ein Schutzrohr gesetzt werden.

Das PYD®-DF10 Dehnfugenprofil wird an der geplanten Stelle angesetzt und Rohrkreuzungen markiert. Die Kreuzungspunkte werden ausgeschnitten und das Profil mittels Klebestreifen gesetzt.

Die PYD®-EM Estrichmessstellen werden mit genug Abstand zu den Systemrohren mittig einmal pro Raum gesetzt. In größeren Räumen >50m² entsprechend mehr.

PYD®-SR Systemrohr

Produktdatenblatt

PYD®-SR Systemrohr

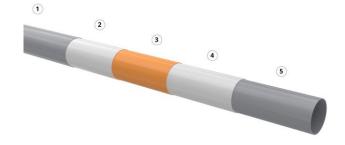
Artikelnummer: SR16, SR20, SR205

Flexibles 5-Schicht-Vollkunststoff-Verbundrohr PE-RT Typ I für Flächenheizungen und -kühlungen, mit innenliegender und damit geschützter Sauerstoffdiffusionssperre EVOH. Hochflexibel und verlegefreundlich nach DIN 16833 und der Anwendungsnorm DIN 4726. Sauerstoffdicht nach DIN 4726. Betriebs- und Produktüberwachung durch KIWA, CE geprüft. Es werden die Forderungen der ISO 10508 Klasse 4 (Fußbodenheizung) erfüllt. Verbindung mit PYD-Klemmringverschraubungen und zertifizierten PYD-Pressyerbindern.

Technische Daten

Artikelnummer	SR16	SR20	SR205
Verpackungseinheit [m]	300	250	500
Material ISO 22391	PE-RT Type I	PE-RT Type I	PE-RT Type I
	(nicht flammgeschützt	(nicht flammgeschützt	(nicht flammgeschützt
	und frei von Halogenen)	und frei von Halogenen)	und frei von Halogenen)
Dimension	16 x 2,0	20 x 2,0	20 x 2,0
Außendurchmesser [mm]	16	20	20
Innendurchmesser [mm]	12	16	16
Wanddicke [mm]	2	2	2
Min. Biegeradius [mm]	80	100	100
Max. Betriebstemperatur [°C]	< 70	< 70	< 70
Max. Betriebsdruck [bar]	6	6	6
Sicherheitstemperatur für 100 h [°C]	100	100	100
Wärmeleitfähigkeit bei 20 °C [W/mK]	0,41	0,41	0,41
Längenausdehnungskoeffizient [mm/mK]	0,195	0,195	0,195
Oberflächenrauheit innen [mm]	0,007	0,007	0,007
Sauerstoffdurchlassigkeit [g/m³d]	< 0,1	< 0,1	< 0,1
Gewicht [kg/m]	0,0846	0,1088	0,1088
Wasserinhalt [I/m]	0,113	0,201	0,201
Baustoffklasse DIN 4102	B2	B2	B2

Vorteile:


- Innenliegende EVOH Sauerstoffsperrschicht verhindert das Eindringen von Sauerstoff
- hohe Temperatur- und Druckbeständigkeit
- beständig gegen zahlreiche Chemikalien
- hohe Flexibilität
- keine Inkrustation dank glatter Innenrohroberfläche

Bewährte Qualität: Zertifikate von KIWA, KOMO, SKZ, DIN Certco

Anwendungsklasse 4 (Fußbodenheizung) gemäß ISO 10508

Anwandungsklassa	Berechnungstemperatur T _D	Betriebsdauer bei T _D	T _{max}	Betriebsdauer bei T _{max}	T _{mal}	Betriebsdauer bei T _{mal}
Anwendungsklasse	°C	Jahre	°C	Jahre	°C	h
	20 plus kumulativ	2,5				
4 40 plus kumulativ		20	70	2,5	100	100
	60	25				

Schichtaufbau

- 1. Außenschicht aus PE-RT Typ I
- 2. Haftvermittler
- 3. EVOH Sauerstoffsperrschicht
- 4. Haftvermittler
- 5. Innenrohr aus PE-RT Typ I

Systemkomponenten

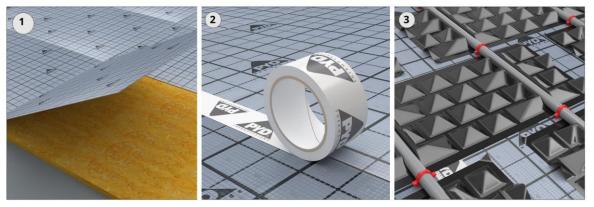
PYD®-HKP Hohlkammer-Verlegeplatte aus PP-C, 3 mm

Produktdatenblatt

PYD®-HKP Hohlkammer-Verlegeplatte aus PP-C, 3 mm

Artikelnummer: HKP

Hohlkammer-Verlegeplatte aus Polypropylen Copolymer (PP-C) mit aufgedrucktem Verlegeraster für die bohrlose Systembefestigung. Verlegung auf nahezu jeder bauseitigen Dämmung möglich. Das Produkt zeichnet sich durch eine hohe Stabilität aus, wodurch auch sehr weiche Unterdämmungen, wie beispielsweise aus Glasfaser, verwendet werden können. Einfache Anpassung an die jeweilige Raumgeometrie mittels Cuttermesser.



Technische Daten

Dicke	3 mm (± 0,1 mm)
Breite	1000 mm (± 3,0 mm)
Länge	2000 mm (± 1,0 %)
Länge gefaltet	1000 mm
Gewicht	0,5 kg/m² (± 5,0 %)
Werkstoff	Polypropylen Copolymer (nicht flammgeschützt und frei von Halogenen)
Baustoffklasse	E

Hinweis: Die PYD®-HKP Hohlkammer-Verlegeplatte ist zu 100 % recycelbar. Die Platten werden aus Regranulat hergestellt, wodurch sich ein geringerer CO₂-Fußabdruck als bei der Herstellung aus Primärmaterial ergibt.

Verarbeitungshinweis

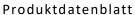
Nach der vollständigen Abklebung an den Stoßseiten ist die Hohlkammer-Verlegeplatte gemäß DIN 18560 und DIN EN 1264 zum Schutz gegen Estrichanmachwasser einsetzbar.

Systemkomponenten

PYD®-KL Klebeband aus PP, 66 m

Produktdatenblatt

PYD®-KL Klebeband aus PP, 66 m


Artikelnummer: KL

Zum Verkleben der Stoßkanten der Systemplatten gemäß DIN 18560 und DIN EN 1264 zum Schutz gegen Estrichanmachwasser. Bei Calciumsulfatestrich zusätzlich zum Verkleben des Folienflansches der Randdämmstreifen. Stark klebend.

Technische Daten

Breite	50 mm (± 3,5 %)
Länge	66 m (± 1,5 %)
Dicke	28 my (± 8 %)
Bruchdehnung	140 % (± 20 %)
Zugfestigkeit	4,5 kg/cm (± 0,5)
Werkstoff Träger	Polypropylen (nicht flammgeschützt und frei von Halogenen)
Werkstoff Kleber	Acrylat
Baustoffklasse	B2

PYD®-SC Systemclips

Artikelnummer: SCT, SCTG, SCPL

Systemclips, gefertigt aus schlagfestem Kunststoff, zur Befestigung des Heizrohres mit spezieller Feder, um ein Aufschwimmen des Rohres zu verhindern. Magaziniert und thermofixiert. Universell einsetzbar für Systemrohre 20x2,0 und 16x2,0.

Technische Daten

Artikelnummer	SCT	SCTG	SCPL
Bild			
Material	Polypropylen	Polypropylen	Polypropylen
	(nicht flammgeschützt und frei von Halogenen)	(nicht flammgeschützt und frei von Halogenen)	(nicht flammgeschützt und frei von Halogenen)
Farbe	rot	rot	grau
Mindestdicke Dämmung [mm]	15	15	20
Baustoffklasse	B2	B2	B2
Verpackungseinheit [Stück]	300	1440	300

Hinweis: PYD®-SCPL Systemclips Panlong sind durch ihre spezielle Konstruktion für Dämmungen (XPS) ohne Gewebefolie geeignet.

Systemkomponenten

PYD®-KL Klebeband aus PP, 66 m

Produktdatenblatt

PYD®-KL Klebeband aus PP, 66 m

Artikelnummer: KL

Zum Verkleben der Stoßkanten der Systemplatten gemäß DIN 18560 und DIN EN 1264 zum Schutz gegen Estrichanmachwasser. Bei Calciumsulfatestrich zusätzlich zum Verkleben des Folienflansches der Randdämmstreifen. Stark klebend.

Technische Daten

Breite	50 mm (± 3,5 %)
Länge	66 m (± 1,5 %)
Dicke	28 my (± 8 %)
Bruchdehnung	140 % (± 20 %)
Zugfestigkeit	4,5 kg/cm (± 0,5)
Werkstoff Träger	Polypropylen (nicht flammgeschützt und frei von Halogenen)
Werkstoff Kleber	Acrylat
Baustoffklasse	B2

PYD®-THERMOSYSTEME Die Flächenheizung & Flächenkühlung

Herstellererklärung

SVHC

Die PYD-Thermosysteme GmbH ist gemäß Art. 33 der REACH-Verordnung dazu verpflichtet, ihre Kunden über das Vorhandensein von sehr besorgniserregenden Stoffen (SVHC-Stoffe) in Produkten zu informieren, sofern diese Stoffe in einer Massenkonzentration von über 0,1 Prozent enthalten sind.

Die Erfüllung dieser Informationspflicht erfolgt aus eigenem Interesse sowie vor dem Hintergrund einer hohen Liefer- und Produktionssicherheit. Den gesetzlichen Vorgaben gemäß Art. 33 der REACH-Verordnung wird nachgekommen und bestätigt, dass gemäß Auskunft der jeweiligen Lieferanten keine besonders besorgniserregenden Stoffe (SVHC) der Kandidatenliste enthalten sind bzw. die jeweils maximal zulässigen Grenzwerte eingehalten werden.

Unter Berücksichtigung der uns vorliegenden Informationen sowie der Auskünfte unserer Lieferanten lässt sich prognostizieren, dass in unseren Produkten keine SVHC-Stoffe in einer Massenkonzentration von über 0,1 Prozent enthalten sind.

PYD-Thermosysteme GmbH Stand: 06/24 www.PYD.de ● info@pyd.de