

SHI-PRODUKTPASS

Produkte finden - Gebäude zertifizieren

SHI-Produktpass-Nr.:

12090-10-1024

noraplan 916

Warengruppe: Kautschukbeläge - elastische Bodenbeläge

nora systems GmbH Höhnerweg 2-4 69469 Weinheim

Produktqualitäten:

Helmut Köttner Wissenschaftlicher Leiter Freiburg, den 27.08.2025

noraplan 916

Produkt:

SHI Produktpass-Nr.:

12090-10-1024

Inhalt

SHI-Produktbewertung 2024	1
Qualitätssiegel Nachhaltiges Gebäude	2
<u></u> EU-Taxonomie	3
■ DGNB Neubau 2023	4
■ DGNB Neubau 2018	5
■ BNB-BN Neubau V2015	6
■ BREEAM DE Neubau 2018	7
Produktsiegel	8
Rechtliche Hinweise	9
Technisches Datenblatt/Anhänge	10

Wir sind stolz darauf, dass die SHI-Datenbank, die erste und einzige Datenbank für Bauprodukte ist, die ihre umfassenden Prozesse sowie die Aktualität regelmäßig von dem unabhängigen Prüfunternehmen SGS-TÜV Saar überprüfen lässt.

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

SHI-Produktbewertung 2024

Seit 2008 etabliert die Sentinel Holding Institut GmbH (SHI) einen einzigartigen Standard für schadstoffgeprüfte Produkte. Experten führen unabhängige Produktprüfungen nach klaren und transparenten Kriterien durch. Zusätzlich überprüft das unabhängige Prüfunternehmen SGS regelmäßig die Prozesse und Aktualität.

Kriterium	Produktkategorie	Schadstoffgrenzwert	Bewertung
SHI-Produktbewertung	Sonstige Bodenbeläge	TVOC ≤ 160 µg/m³ Formaldehyd ≤ 10 µg/m³	Schadstoffgeprüft
Gültig bis: 09.07.2026			

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

Qualitätssiegel Nachhaltiges Gebäude

Das Qualitätssiegel Nachhaltiges Gebäude, entwickelt durch das Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen (BMWSB), legt Anforderungen an die ökologische, soziokulturelle und ökonomische Qualität von Gebäuden fest. Das Sentinel Holding Institut prüft Bauprodukte gemäß den QNG-Anforderungen für eine Zertifizierung und vergibt das QNG-ready Siegel. Das Einhalten des QNG-Standards ist Voraussetzung für den KfW-Förderkredit. Für bestimmte Produktgruppen hat das QNG derzeit keine spezifischen Anforderungen definiert. Diese Produkte sind als nicht bewertungsrelevant eingestuft, können jedoch in QNG-Projekten genutzt werden.

Kriterium	Pos. / Bauproduktgruppe	Betrachtete Stoffe	QNG Freigabe
3.1.3 Schadstoffvermeidung in Baumaterialien	2.2 Elastische Bodenbeläge – auch mehrschichtige Systeme	VOC / Emissionen / gefährliche Stoffe / Polyzyklische Aromatische Kohlenwasserstoffe (PAK) / SVHC / Schwermetalle	QNG-ready
Nachweis: Blauer Engel Zertifizierung. Herstellererklärung vom 03.07.2025.			

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

Die EU-Taxonomie klassifiziert wirtschaftliche Aktivitäten und Produkte nach ihren Umweltauswirkungen. Auf der Produktebene gibt es gemäß der EU-Verordnung klare Anforderungen zu Formaldehyd und flüchtigen organischen Verbindungen (VOC). Die Sentinel Holding Institut GmbH kennzeichnet qualifizierte Produkte, die diesen Standard erfüllen

Kriterium	Produkttyp	Betrachtete Stoffe	Bewertung
DNSH - Vermeidung und Verminderung der Umweltverschmutzung	Bodenbeläge (einschließlich zugehöriger Kleb- und Dichtstoffe)	Stoffe nach Anlage C, Formaldehyd, Karzinogene VOC Kategorie 1A/1B	EU-Taxonomie konform
Nachweis: Blauer Engel Zer	tifizierung		

Produkt.

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

DGNB Neubau 2023

Das DGNB-System (Deutsche Gesellschaft für Nachhaltiges Bauen) bewertet die Nachhaltigkeit von Gebäuden verschiedener Art. Das System ist sowohl anwendbar für private und gewerbliche Großprojekte als auch für kleinere Wohngebäude. Die Version 2023 setzt hohe Standards für ökologische, ökonomische, soziokulturelle und funktionale Aspekte während des gesamten Lebenszyklus eines Gebäudes.

Kriterium	Pos. / Relevante Bauteile / Bau-Materialien / Flächen	Betrachtete Stoffe / Aspekte	Qualitätsstufe
ENV 1.2 Risiken für die lokale Umwelt, 03.05.2024 (3. Auflage)	7 Bodenbeläge (Elastische Bodenbeläge)	VVOC, VOC, SVOC Emissionen und Gehalt an gefährlichen Stoffen	Qualitätsstufe: 4
Nachweis: Blauer Engel Zer	tifizierung		

Kriterium	Bewertung	
ENV 1.1 Klimaschutz und Energie (*)	Kann Gesamtbewertung positiv beeinflussen	
Nachweis: EPD (Einbindung von Recycled content und bio-based Materialien)		

Kriterium	Bewertung
SOC 1.2 Innenraumluftqualität (*)	Kann Gesamtbewertung positiv beeinflussen
Nachweis: SHI-Schadstoffgeprüft	

Kriterium	Pos. / Relevante Bauteile / Bau- Materialien / Flächen	Betrachtete Stoffe / Aspekte	Qualitätsstufe
ENV 1.2 Risiken für die lokale Umwelt, 29.05.2025 (4. Auflage)	7 Bodenbeläge in der Innenanwendung (Elastische Bodenbeläge)	VVOC, VOC, SVOC Emissionen und Gehalt an gefährlichen Stoffen	Qualitätsstufe: 4
Nachweis: Blauer Engel Zer	tifizierung		

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

DGNB Neubau 2018

Das DGNB-System (Deutsche Gesellschaft für Nachhaltiges Bauen) bewertet die Nachhaltigkeit von Gebäuden verschiedener Art. Das System ist sowohl anwendbar für private und gewerbliche Großprojekte als auch für kleinere Wohngebäude.

Kriterium	Pos. / Relevante Bauteile / Bau-Materialien / Flächen	Betrachtete Stoffe / Aspekte	Qualitätsstufe
ENV 1.2 Risiken für die lokale Umwelt	7 Bodenbeläge (Elastische Bodenbeläge)	VOC / SVOC / gefährliche Stoffe	Qualitätsstufe: 4
Nachweis: Blauer Engel Zertifizierung. Herstellererklärung vom 03.07.2025.			

SENTINEL INSIDE

www.sentinel-holding.eu

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

BNB-BN Neubau V2015

Das Bewertungssystem Nachhaltiges Bauen ist ein Instrument zur Bewertung von Büro- und Verwaltungsgebäuden, Unterrichtsgebäuden, Laborgebäuden sowie Außenanlagen in Deutschland. Das BNB wurde vom damaligen Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) entwickelt und unterliegt heute dem Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen.

Kriterium	Pos. / Bauprodukttyp	Betrachtete Schadstoffgruppe	Qualitätsniveau
1.1.6 Risiken für die lokale Umwelt	2a Elastische Bodenbeläge – mit und ohne ankaschierte Verlege- oder Dämmunterlage	VOC / gefährliche Stoffe / Schwermetalle	Qualitätsniveau 5
Nachweis: Blauer Engel Zer	tifizierung		

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

BREEAM DE Neubau 2018

BREEAM (Building Research Establishment Environmental Assessment Methodology) ist ein britisches Gebäudebewertungssystem, welches die Nachhaltigkeit von Neubauten, Sanierungsprojekten und Umbauten einstuft. Das Bewertungssystem wurde vom Building Research Establishment (BRE) entwickelt und zielt darauf ab, ökologische, ökonomische und soziale Auswirkungen von Gebäuden zu bewerten und zu verbessern.

Kriterium	Produktkategorie	Betrachtete Stoffe	Qualitätsstufe
Hea oz Qualität der Innenraumluft	Bodenbeläge (einschließlich Bodenspachtelmassen und Harzböden)	Emissionen: Formaldehyd, TVOC, TSVOC, Krebserregende Stoffe	herausragende Qualität
Nachweis: Indoor Air Comfo	ort Gold Zertifikat vom 10.12.2019		

www.sentinel-holding.eu

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

Produktsiegel

In der Baubranche spielt die Auswahl qualitativ hochwertiger Materialien eine zentrale Rolle für die Gesundheit in Gebäuden und deren Nachhaltigkeit. Produktlabels und Zertifikate bieten Orientierung, um diesen Anforderungen gerecht zu werden. Allerdings besitzt jedes Zertifikat und Label eigene Prüfkriterien, die genau betrachtet werden sollten, um sicherzustellen, dass sie den spezifischen Bedürfnissen eines Bauvorhabens entsprechen.

Der vom Umweltbundesamt als Zeichengeber und vom RAL e.V. als verantwortliche Prüforganisation verliehene "Blaue Engel" ist eines der ältesten und in Deutschland das am häufigsten vorkommende Umweltzeichen. Den "Blauen Engel" gibt es in zahlreichen Ausprägungen für die unterschiedlichsten Produktgruppen. Die zugrunde liegenden Prüfkriterien der jeweiligen Umweltzeichen (UZ) sollten in gesundheitlicher Hinsicht individuell betrachtet werden, da es durchaus Unterschiede in der Relevanz und Strenge gibt.

Das Eurofins-Label Indoor Air Comfort® bestätigt die Einhaltung von Vorgaben zu niedrigen VOC-Emissionen. Die Standard-Stufe deckt die gesetzlichen Anforderungen in der EU ab, während die Gold-Stufe zusätzlich Emissionskriterien freiwilliger Umweltzeichen und Gebäudezertifizierungen berücksichtigt.

Das IBU ist eine Initiative von Bauprodukt- und Baukomponentenherstellern, die sich dem Leitbild der Nachhaltigkeit im Bauwesen verpflichten. IBU ist Programmbetreiber für Umwelt-Produktdeklarationen (Environmental Product Declaration, kurz: EPD) nach der Norm EN 15804. Das IBU-EPD-Programm steht für umfassende Ökobilanzen und Umweltwirkungen von Bauprodukten und eine unabhängige Überprüfung durch Dritte.

Dieses Produkt ist schadstoffgeprüft und wird vom Sentinel Holding Institut empfohlen. Gesundes Bauen, Modernisieren und Betreiben von Immobilien erfolgt dank des Sentinel Holding Konzepts nach transparenten und nachvollziehbaren Kriterien.

Produkte mit dem QNG-ready Siegel des Sentinel Holding Instituts eignen sich für Projekte, für welche das Qualitätssiegel Nachhaltiges Gebäude (QNG) angestrebt wird. QNG-ready Produkte erfüllen die Anforderungen des QNG Anhangdokument 3.1.3 "Schadstoffvermeidung in Baumaterialien". Das KfW-Kreditprogramm Klimafreundlicher Neubau mit QNG kann eine höhere Fördersumme ermöglichen.

www.sentinel-holding.eu

SHI Produktpass-Nr.:

noraplan 916

12090-10-1024

Rechtliche Hinweise

(*) Die Kriterien dieses Steckbriefs beziehen sich auf das gesamte Bauobjekt. Die Bewertung erfolgt auf der Ebene des Gebäudes. Im Rahmen einer sachgemäßen Planung und fachgerechten Installation können einzelne Produkte einen positiven Beitrag zum Gesamtergebnis der Bewertung leisten. Das Sentinel Holding Institut stützt sich einzig auf die Angaben des Herstellers.

Alle Kriterien finden Sie unter:

https://www.sentinel-holding.eu/de/Themenwelten/Pr%C3%BCfkriterien%2of%C3%BCr%2oProdukte

Wir sind stolz darauf, dass die SHI-Datenbank, die erste und einzige Datenbank für Bauprodukte ist, die ihre umfassenden Prozesse sowie die Aktualität regelmäßig von dem unabhängigen Prüfunternehmen SGS-TÜV Saar überprüfen lässt.

Herausgeber

Sentinel Holding Institut GmbH Bötzinger Str. 38 79111 Freiburg im Breisgau Tel.: +49 761 59048170 info@sentinel-holding.eu www.sentinel-holding.eu

Technische Daten

noraplan® uni, homogen, einschichtig, Oberfläche: glatt

	Prüfnorm	Anforderungen	Gemittelte Prüfwerte der laufenden Produktion
CE-Konformität	EN 14041		Hersteller: nora systems GmbH, D-69469 Weinheim
DoP-Nr.	EN 14041		0018
Wärmeleitfähigkeit	EN 10456	λ = 0,17 W/(m·K)	Erfüllt
Gleitreibungskoeffizient	EN 13893	DS	Erfüllt
Brandklasse	EN 13501-1	Unverklebt	B _{ff} -s1
Brandklasse	EN 13501-1	Verklebt auf mineralischem Untergrund	B _{ff} -s1

Eigenschaften nach EN 1817

Di L	EN 100 04040	NEW 1 0 45 1 EN 4047	0.0
Dicke	EN ISO 24346	Mittelwert ± 0,15 mm nach EN 1817	2,0 mm
Maßbeständigkeit	EN ISO 23999	± 0,4 %	± 0,3 %
Beständigkeit gegen Zigarettenglut	EN 1399	Verfahren A (ausgedrückt) ≥ Stufe 4 Verfahren B (brennend) ≥ Stufe 3	Erfüllt
Biegsamkeit	EN ISO 24344, Verfahren A	Dorndurchmesser 20 mm, keine Rissbildung	Erfüllt
Härte	ISO 48-4	≥ 75 Shore A nach EN 1817	94 Shore A
Resteindruck	EN ISO 24343	Mittelwert ≤ 0,15 mm bei Dicke < 2,5 mm	0,03 mm
Abriebfestigkeit bei 5 N Auflast	ISO 4649, Verfahren A	≤ 250 mm³	130 mm³
Farbbeständigkeit gegenüber künstlichem Licht	ISO 105-B02, Verfahren 3, Prüfbedingungen 6.1 a)	Mindestens Stufe 6 des Blaumaßstabs; ≥ Stufe 3 des Graumaßstabs	Graumaßstab ≥ Stufe 3 nach ISO 105-A02
Klassifizierung	EN ISO 10874	Gewerblich / Industriell	34 / 42

Zusätzliche technische Eigenschaften

Toxizität der Brandgase	DIN 53436		Freiwerdende Schwelgase toxikologisch unbedenklich
Rutschhemmung	DIN EN 16165	Gemäß DGUV 108-003	R9
Trittschallverbesserungsmaß	ISO 10140-3		6 dB
Chemikalieneinwirkung	EN ISO 26987		Beständig in Abhängigkeit von Konzentration und Einwirkzeit*
Elektrische Isolierfähigkeit	EN 1081 R1		> 10 ⁹ Ohm
Elektrostatisches Verhalten beim Begehen	EN 1815		Antistatisch, Aufladung bei Gummisohlen < 2 kV
Stuhlrollenversuch	EN ISO 4918		Geeignet bei Verwendung von Stuhlrollen, Typ W, nach EN 12529
Fußbodenheizung	EN 1264-2		Geeignet, max. 35 C°

^{*} Bei verstärkter Einwirkung von Ölen, Fetten, Säuren, Laugen und anderer aggressiver Chemikalien ist Rücksprache erforderlich

Produktionsbedingte Farbabweichungen sowie technische Veränderungen, die der Verbesserung der Produkte dienen, behalten wir uns vor.

EN 1817: Spezifikation für homogene und heterogene ebene Elastomer-Bodenbeläge

Interface®

Carpet Tile | LVT | nora® Rubber Flooring

nora systems GmbH \cdot Höhnerweg 2-4 \cdot 69469 Weinheim \cdot Germany

An die betreffende Stelle

03 July 2025

Bestätigung hinsichtlich Zusammensetzung von nora Bodenbelägen

Sehr geehrte Damen und Herren,

hiermit bestätigen wir, dass in nora Bodenbelägen der Gehalt an Blei und Zinn, Chlorparaffinen, Cadmium, Chrom-VI-Verbindungen, reproduktionstoxischen Phthalaten, SVHC und CMR-Stoffen 1A/1B jeweils < 0,1% ist.

Mit freundlichen Grüßen

Viktor Reichelt

Product Manager noraplan®

i.A. V. Pert

nora systems GmbH

Höhnerweg 2 – 4 69469 Weinheim Deutschland

Kontakt: Viktor Reichelt Abteilung: Product Management +49 6201 80 5406 Viktor.Reichelt@interface.com www.nora.com

Sitz Weinheim Amtsgericht Mannheim HRB 703230

Geschäftsführung: Anton van Keken, Robert Heeres

Aufsichtsratsvorsitz: Daniëlle Verschuur

UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804+A2

Deklarationsinhaber nora systems GmbH

Herausgeber Institut Bauen und Umwelt e.V. (IBU)

Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-NOR-2022006-IBA1-DE

Ausstellungsdatum 15.02.2022 Gültig bis 14.02.2027

noraplan® uni, elastischer, einfarbiger Bodenbelag aus Kautschuk nora systems GmbH

www.ibu-epd.com | https://epd-online.com

Allgemeine Angaben

nora systems GmbH noraplan® uni Programmhalter Inhaber der Deklaration IBU - Institut Bauen und Umwelt e.V. nora Systems GmbH Panoramastr. 1 Höhnerweg 2-4 10178 Berlin 69469 Weinheim Deutschland Deklariertes Produkt/deklarierte Einheit Deklarationsnummer EPD-NOR-2022006-IBA1-DE 1 m² Bodenbelag Diese Deklaration basiert auf den Produktkategorien-Gültigkeitsbereich: Regeln: Produktfamilie noraplan® uni. Einfarbiger kontinuierlich Bodenbeläge, 02/2018 in Bahnen vulkanisierte Bodenbeläge aus Kautschuk in (PCR geprüft und zugelassen durch den unabhängigen verschiedenen Farben. Sachverständigenrat (SVR)) Diese Deklaration ist eine Umweltproduktdeklaration gemäß ISO 14025 und EN 15804 und beschreibt die Ausstellungsdatum spezifische Umweltleistung der hier genannten 15.02.2022 Bauprodukte, produziert in Deutschland am Produktionsstandort Weinheim (Bergstraße). Gültig bis 14.02.2027 Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Ökobilanzdaten und Nachweise ist ausgeschlossen. Die EPD wurde nach den Vorgaben der EN 15804+A2 erstellt. Im Folgenden wird die Norm vereinfacht als EN 15804 bezeichnet. Verifizierung Jan Liter Die Europäische Norm EN 15804 dient als Kern-PCR Unabhängige Verifizierung der Deklaration und Angaben gemäß ISO 14025:2010 Dipl. Ing. Hans Peters |x| extern (Vorstandsvorsitzender des Instituts Bauen und Umwelt e.V.) Minke Dr. Alexander Röder Matthias Klingler. (Geschäftsführer Instituts Bauen und Umwelt e.V.) Unabhängige/-r Verifizierer/-in

2. Produkt

2.1 Produktbeschreibung/Produktdefinition

In dieser Umwelt-Produktdeklaration (EDP) werden elastische Kautschuk-Bodenbeläge der nora systems GmbH aus der Produktfamilie noraplan® uni abgebildet.

Für die Produktfamilie noraplan® uni gelten die weiteren Normen und Standards.

- EN 1817:2020-7: Elastische Bodenbeläge Spezifikation für homogene und heterogene ebene Elastomer-Bodenbeläge
- EN 14521:2004-9: Elastische Bodenbeläge Spezifikation für ebene Elastomer-Bodenbeläge mit oder ohne Schaumunterschicht mit einer dekorativen Schicht
- ISO 10874:2009-11: Elastische, textile und Laminat-Bodenbeläge – Klassifizierung

Für das Inverkehrbringen der noraplan[®] uni Beläge in der EU/EFTA (mit Ausnahme der Schweiz) gilt

die Verordnung (EU) Nr. 305/2011(CPR). Das Produkt benötigt eine Leistungserklärung unter Berücksichtigung der EN 14041: 2018-5, Elastische, textile, Laminat- und modulare mehrschichtige Bodenbeläge- Wesentliche Merkmale und die CE-Kennzeichnung.

Für die Verwendung gelten die jeweiligen nationalen Bestimmungen.

2.2 Anwendung

noraplan® uni Bodenbeläge sind weitgehend beständig gegen viele Öle und Schmierfette. Die Bodenbeläge werden gemäß *ISO 10874* klassifiziert.

Bodenbeläge für starke Beanspruchung im Objektbereich:

2.3 Technische Daten

Auszug aus technischen Datenblättern: (abrufbar auf www.nora.com)

Bautechnische Daten

Bezeichnung	Wert	Einheit
Produktdicke (ISO 24346)	2	mm
Flächengewicht	3360	g/m²
Produktform	Bahnen/ Fliesen	ı
Herstellungsart	konti- nuierlich	-
Trittschallverbesserung (ISO 10140-3)	6	dB
Rutschhemmung (DIN 51130)	R9	glatte Ober- fläche
Härte (ISO 48-4)	94	ShoreA
Abrieb bei 5 N Auflast (ISO 4649, Verfahren A)	130	mm^3

Leistungswerte des Produkts entsprechend der Leistungserklärung in Bezug auf dessen wesentliche Merkmale gemäß EN 14041:2018, Elastische, textile, Laminat- und modulare mehrschichtige Bodenbeläge – Wesentliche Merkmale.

2.4 Lieferzustand

Die Lieferung erfolgt als Bahnenware in Rollen mit 1,22 m Breite in verschiedenen Längen oder in Fliesen mit den Abmessungen ~ 610 x 610 mm. Die Belagsrückseite ist geschliffen und zeigt Pfeile für die Verlegerichtung.

2.5 Grundstoffe/Hilfsstoffe

Vereinfachte Rezeptur noraplan® uni:

Bezeichnung	Wert	Einheit
Polymere (Synthesekautschuk):	30	%
Mineralische Füllstoffe:	51	%
Diverse Farbpigmente:	9	%
Additive und Vulkanisationssystem:	10	%

Als Additive werden Wachse und Alterungsschutzmittel eingesetzt. Das Vulkanisationssystem basiert auf dem Vernetzer Schwefel und Vulkanisationsbeschleunigern.

- 1) Das Produkt enthält Stoffe der ECHA-Liste der für eine Zulassung in Frage kommenden besonders besorgniserregenden Stoffe (en: Substances of Very High Concern SVHC) (Datum 08.07.2021) oberhalb von 0,1 Massen-%: **nein**.
- 2) Das Produkt enthält weitere CMR-Stoffe der Kategorie 1A oder 1B, die nicht auf der Kandidatenliste stehen, oberhalb von 0,1 Massen-% in mindestens einem Teilerzeugnis: **nein**.
- 3) Dem vorliegenden Bauprodukt wurden Biozidprodukte zugesetzt oder es wurde mit Biozidprodukten behandelt (es handelt sich damit um eine behandelte Ware im Sinne der Biozidprodukteverordnung (EU) Nr. 528/2012): **nein**.

2.6 Herstellung

Die Produktionsstufen sind Einwiegen, Mischen und Ausziehen der unvulkanisierten Rohlinge auf einem Kalander. Die anschließende Vulkanisation erfolgt kontinuierlich auf Fertigungslinien mit dampfbeheizten Trommelpressen unter hohem Druck bei einer Temperatur von ca. 180°C zu 1,22 m breiten Bahnen. Hinter der Vulkanisationsmaschine werden die Bahnen rückseitig geschliffen und anschließend wird der acoustic Schaum auf den Kautschukbelag aufkaschiert und als Rollenware aufgewickelt. Das Flächengewicht beträgt 3,36 kg/m².

Das Qualitätsmanagement der nora systems GmbH ist nach *ISO* 9001 zertifiziert.

2.7 Umwelt und Gesundheit während der Herstellung

Die Anhebung von Lasten (Rohstoffen) wird in vielfältiger Weise durch geeignete Hebehilfen unterstützt.

Die nora systems GmbH bezieht ihre gesamte elektrische Energie für Produktion und Verwaltung am Standort Weinheim aus erneuerbaren Energien. Entsprechende Nachweise liegen dem IBU vor. Thermische Energie wird zentral bzw. in Heizkesseln an einzelnen Anlagen über Erdgas erzeugt.

Seit dem Jahr 2000 lässt die nora systems GmbH ihr bereits seit 1996 bestehendes Umweltmanagementsystem nach *ISO 14001* zertifizieren.

Ergänzend wird ein Energiemanagementsystem nach *ISO 50001* gepflegt.

2.8 Produktverarbeitung/Installation

Grundlage der Bodenbelagsverlegung sind die fachlichen Regeln der *DIN 18365*:
Bodenbelagarbeiten. Als Unterboden sind Estriche nach VOB, TEIL C, *DIN 18353*: Estricharbeiten, Hartgussasphalt nach *DIN 18354*:
Asphaltbelagsarbeiten, Spanplatten, Sperrholz usw. geeignet. Vor dem Einbau von Kautschukbelägen muss generell gespachtelt werden.

Die vollflächige Verklebung erfolgt nach den Verlegeempfehlungen der nora systems GmbH mit für noraplan® Kautschukbeläge geeigneten Klebstoffen und weiteren Hilfsmitteln (abrufbar auf www.nora.com).

Bei der Auswahl der Verlegewerkstoffe ist darauf zu achten, dass diese die Anforderungen des Blauen Engel nach *DE-UZ 113* für emissionsarme Bodenbelagsklebstoffe und andere Verlegewerkstoffe oder des *GEV-EMICODE EC1* PLUS erfüllen. Diese Spezifikation sichert optimalen Gesundheitsschutz aufgrund minimaler Emissionen zu.

Daneben sind grundsätzlich die Hinweise der Hersteller der Verlegewerkstoffe zu beachten. Beim Verarbeiten von Verlegehilfsstoffen sind die Bestimmungen der *TRGS 610* zu beachten. Verschnittreste sollten thermisch/stofflich verwertet werden.

Die Erstreinigung und Ersteinpflege darf erst nach der Abbindephase des Klebstoffs, frühestens 48 Stunden nach der Verlegung, erfolgen.

2.9 Verpackung

Rollenware ist auf Pappkerne aus recycelter Pappe aufgewickelt (die Pappkerne werden zurückgenommen und wieder verwendet). Die Umverpackung besteht aus recycelbarem Papier. Die einzelnen Rollen werden stehend auf Europoolpaletten aus Holz (Tauschsystem) konfektioniert und mit recycelbarer Polyethylenfolie eingeschweißt.

2.10 Nutzungszustand

Aufgrund ihrer dichten und geschlossenen Oberfläche durch die werksseitige Oberflächenvernetzung nora cleanguard® müssen noraplan® Bodenbeläge grundsätzlich nicht beschichtet werden. Die Beläge sind dauerhaft elastisch, im verklebten Zustand maßstabil und bieten gute ergonomische Eigenschaften.

2.11 Umwelt und Gesundheit während der Nutzung

Da nora® Bodenbeläge während der Nutzungsdauer nicht beschichtet werden müssen, fällt während der Nutzungsphase kein größerer Einsatz von Chemikalien, abgesehen von milden Putzmitteln an. noraplan® uni ist mit dem Blauen Engel *DE-UZ 120* als emissionsarm ausgezeichnet und mit der finnischen *M1 Emissionsklassifizierung* bewertet. Diese Auszeichnungen belegen, dass keine gesundheitlich nachteiligen Wirkungen durch Emissionen von noraplan® uni hervorgerufen werden.

2.12 Referenz-Nutzungsdauer

Eine Berechnung der Referenz-Nutzungsdauer nach *ISO 15686* ist nicht möglich.

Nach Herstellereinschätzung besteht eine technische Nutzungsdauer von mindestens 30 Jahren. Aufgrund des sehr geringen Abriebverhaltens und dem einschichtigen Belagsaufbau (Kautschuk durch und durch) nutzen sich die Beläge selbst bei starker Frequentierung kaum ab und bleiben so über die angegebene Nutzungsdauer in den vorgesehenen Einsatzbereichen und den damit verbundenen üblichen Nutzungsbedingungen voll funktionsfähig und optisch ansprechend.

2.13 Außergewöhnliche Einwirkungen

Brand

noraplan® uni ist nach *EN 13501-1* schwer entflammbar (unverklebt $B_{\rm fl}$ -s1) und entstehende Brandgase sind brandtoxikologisch unbedenklich nach *DIN 53436-1* und *DIN 53436-2*.

Brandschutz

Bezeichnung	Wert
Baustoffklasse	Bfl
Rauchgasentwicklung	s1

Wasser

Unempfindlich gegenüber Wassereinwirkung, wie sie in Einsatzbereichen in Innenräumen typischerweise vorkommt.

Nicht geeignet für ausgesprochene Nassbereiche (z.B. Duschen, Durchschreitebecken etc.).

Mechanische Zerstörung

Nicht relevant.

2.14 Nachnutzungsphase

Für noraplan[®] Kautschukbeläge gibt es grundsätzlich die folgenden Optionen für die Nachnutzungsphase:

- Stoffliche Verwertung (z. B. granuliert und weiterverarbeitet zu Fallschutz-, Industrieoder Tierstallmatten und Sportplatzbelägen oder Flüsterasphalt)
- Thermische Verwertung (z. B. als Ersatzbrennstoff in Wärmekraftwerken)
- Stofflich-thermische Verwertung in der Zementindustrie. (Nutzung der im Belag gespeicherten thermischen Energie sowie des mineralischen Füllstoffs als Rohstoff.)

2.15 Entsorgung

Der Hersteller empfiehlt die Produkte nach der Nutzungsphase einer thermischen Verwertung zuzuführen oder zur Nutzung als Sekundärbrennstoff und Sekundärrohstoff (mineralische Füllstoffe) in der Zementindustrie (stofflich-thermische Verwertung); AVV-Nummer, z. B. 07 02 99; EWC code z. B. 19 12 04.

2.16 Weitere Informationen

Die nora systems GmbH arbeitet an der Reduktion der CO₂-Fußadrücke ihrer Produkte und bilanziert diese jährlich. Die nicht vermeidbaren CO₂-Emissionen aller verkauften Produkte werden über den gesamten Produktlebenszyklus kompensiert (Drittanbieter verifiziertes Carbon Neutral Floors™ Programm).

Weitere Informationen unter www.nora.com.

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Als Referenzgröße wird 1 m² Bodenbelag betrachtet. Die Werte des Moduls A1- A3 beziehen sich auf 1 m² produziertes Produkt.

Es handelt sich um eine Produktdeklaration. Die Herstellung und Beseitigung der Verschnitte bei der Installation werden dem Modul A5 zugeordnet. Die Module A1- A3, A4 und A5 beziehen sich gesamt auf 1 m² installiertes Produkt.

Die zur Installation notwendigen Materialien zur Vorbereitung des Untergrunds und zur Klebung werden nicht berücksichtigt. Für den vollständigen Bodenaufbau können Umweltproduktdeklarationen

nach den PCR "Dispersionsklebstoffe und – voranstriche" sowie "Mineralische Werkmörtel" herangezogen werden.

Deklarierte Einheit

Bezeichnung	Wert	Einheit
Deklarierte Einheit	1	m ²
Umrechnungsfaktor		
[Masse/deklarierte Einheit]	3,36	-
Flächengewicht		
Schichtdicke	2	mm

3.2 Systemgrenze

Typ der EPD: von der Wiege bis zum Fabriktor mit Optionen.

Die ökobilanzielle Berechnung umfasst folgende Phasen:

- Herstellungsphase A1- A3: Berücksichtigung der Vorkette und der Produktion des Bodenbelags, inkl. Verpackung (Input von Altpapier bei der Papier-/Kartonherstellung).
- Transport A4: Annahme für den Transport der Produkte zur Baustelle.
- Installationsphase A5: Berücksichtigung der Herstellung und des Transports der Verschnittmenge, Verbrennung des Verschnitts (gewonnene Energie wird in D als vermiedene Umweltlasten deklariert), Entsorgung der Verpackungsmaterialien (Verbrennung von Polyethylenolie). Die Untergrundvorbehandlung (Grundierung, Spachtelmasse, Klebstoff) bleibt unberücksichtigt. Diese ist abhängig vom Gebäude und der Anwendung und muss im Einzelfall spezifiziert werden.
- Nutzungsphase B2: Szenario für die Reinigung entsprechend den Herstellerempfehlungen (siehe 4.).
- End-of-Life-Phase C1, C2, C3: Szenario für die Verbrennung des Bodenbelags inkl.
 Ausbau aus dem Gebäude und Transport zum Verbrennungsort (gewonnene Energie wird in D als vermiedene Umweltlasten deklariert).
- Nutzen und Lasten für das nächste System D: Gewinnung von elektrischer und thermischer Energie aus der thermischen Verwertung des Produkts, des Installationsverschnitts und der Verpackung

Einflüsse von Abfällen werden in den Modulen berücksichtigt, in denen diese anfallen.

3.3 Abschätzungen und Annahmen

Datensätze zur Vorkette der Herstellung von Basismaterialien werden soweit vorhanden der *GaBi* 10 Datenbank entnommen. Inventare zu einzelnen Materialien stehen nicht vollständig zur Verfügung und werden teilweise mit Datensätzen ähnlicher Chemikalien angenähert oder mittels Zusammenführung vorhandener Datensätze und Literaturangaben abgeschätzt. Die Annahmen für das Reinigungsszenario sind in 4. dargestellt.

3.4 Abschneideregeln

Es werden alle Daten aus der Betriebsdatenerhebung, d. h. alle nach Rezeptur eingesetzten Ausgangsstoffe aufgenommen. Für einzelne verwendete Additive liegen nicht ausreichend Informationen für eine Annäherung der Herstellungskette vor. Der Massenanteil liegt bei ca. 1 %; spezifische Risiken für diese Substanz liegen nicht vor und sie wird bei der Berechnung vernachlässigt.

Transportaufwendungen werden für alle wesentlichen Basismaterialien, den Versand der Produkte und im End-of-Life-Szenario eingerechnet.

Transportaufwendungen für die Verpackungen werden vernachlässigt.

Die ökobilanzielle Berechnung berücksichtigt die während der Produktion direkt anfallenden Produktionsabfälle, die benötigte elektrische und thermische Energie und die Verpackungsmaterialien. In der Herstellung benötigte Maschinen, Anlagen und Infrastruktur bleiben unberücksichtigt. Damit werden keine Input- und Output-Ströme vernachlässigt, die einen wesentlichen Beitrag zur Wirkungsabschätzung beitragen würden.

3.5 Hintergrunddaten

Zur Modellierung des Lebenszyklus des betrachteten Produkts wird das von der Sphera Solutions GmbH entwickelte Software-System zur Ganzheitlichen Bilanzierung *GaBi 10* eingesetzt. Die für die Vorkette erforderlichen Daten, für die keine spezifischen Angaben vorliegen, werden der Datenbank *GaBi 10 2021.2* entnommen.

3.6 Datenqualität

Datensätze wurden aus der genannten Datenbank entnommen. Zum Teil wurden Datensätze zur Vorkette der Herstellung auch von Basismaterialien mit Datensätzen ähnlicher Chemikalien angenähert oder mittels Zusammenführung vorhandener Datensätze und Literaturwerte abgeschätzt.
Die Anforderungen an die technologische,

Die Anforderungen an die technologische, geographische und zeitliche Repräsentativität werden erfüllt.

3.7 Betrachtungszeitraum

Die Herstellungsdaten stellen einen Durchschnitt des Jahres 2020 dar.

3.8 Allokation

Allokation für vorgelagerte Prozesse:

Bei allen Raffinerieprodukten werden Allokationen nach Masse und unterem Heizwert verwendet. Für jedes Raffinerieprodukt werden die Umweltlasten der Produktion spezifisch berechnet.

Bei anderen Materialien, deren Inventar für die Herstellungsberechnung herangezogen wird, werden die jeweils geeigneten Allokationsregeln angewendet. Informationen zu den einzelnen Datensätzen sind dokumentiert unter GaBi database 2021 LCI documentation (sphera.com).

Allokation in den Vordergrunddaten:

Die Gesamtproduktion der nora systems GmbH umfasst neben den deklarierten Produkten weitere Produkte. Die Werte für thermische und elektrische Energie sowie Hilfsmaterialien wurden bei der Datensammlung entsprechend auf die zu deklarierenden Produkte bezogen. Diese Aufteilung erfolgt nach Masse, Fläche, Stück oder Verweilzeit in der Maschine.

Allokation für Abfallmaterialien:

Anfallende Produktionsabfälle werden einer energetischen Verwertung zugeführt. Die dabei resultierende elektrische und thermische Energie wird innerhalb des Gesamtmoduls A1- A3 verrechnet. Alle verwendeten Verbrennungsprozesse werden durch Teilstrombetrachtungen der jeweiligen Materialien abgebildet. Für alle Abfallverbrennungsanlagen wird ein R1-Wert größer als 0,6 angenommen. Die Umweltlasten der Verbrennung von Verschnittresten und dem Produkt im End-of-life-Szenario werden dem

System (A5 bzw. C3) zugeschrieben; resultierende Energiegewinne für thermische und elektrische Energie werden in Modul D deklariert. Die vermiedenen Umweltlasten werden über europäische Durchschnittsdaten für elektrische Energie und thermische Energie aus Erdgas berücksichtigt.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD-Daten nur möglich, wenn alle zu vergleichenden Datensätze nach *EN 15804* erstellt wurden und der Gebäudekontext bzw. die produktspezifischen Leistungsmerkmale berücksichtigt werden.

Als Hintergrunddatenbank für diese Ökobilanz dient die GaBi 10 Datenbank 2021.2.

4. LCA: Szenarien und weitere technische Informationen

Charakteristische Produkteigenschaften Biogener Kohlenstoff

Die folgenden technischen Informationen sind Grundlage für die deklarierten Module. Sie beziehen sich auf die deklarierte Einheit von 1m².

Informationen zur Beschreibung des biogenen Kohlenstoffgehalts am Werkstor

- to monotongonano am rromoto.			
Bezeichnung	Wert	Einheit	
Biogener Kohlenstoff im Produkt	0,047	kg C	
Biogener Kohlenstoff in der zugehörigen Verpackung	0,044	kg C	

Transport zu Baustelle (A4)

Bezeichnung	Wert	Einheit
Liter Treibstoff (LKW)	0,00662	I/100km
Transport Distanz (LKW)	1000	km
Liter Treibstoff (Schiff)	0,00135	I/100km
Transport Distanz (Schiff)	500	km

Einbau ins Gebäude (A5)

Bei der Installation von 1 m² Bodenbelag wird, auf Grund der Raumgeometrie, mehr als 1 m² Bodenbelag benötigt, da ein Zuschneiden des Belages notwendig ist. Es wird mit einem Materialverlust von 5 % gerechnet

Bezeichnung	Wert	Einheit
Materialverlust	0,168	kg

Instandhaltung (B2)

Je nach Nutzungsbereich basierend auf *ISO 10874*, der vom Hersteller empfohlenen technischen Lebensdauer und der erwartbaren Beanspruchung des Bodens kann fallspezifisch die Nutzungsdauer ermittelt werden. Die Auswirkungen des Moduls B2 müssen anhand dieser Nutzungsdauer errechnet werden, um die umweltbezogenen Gesamtauswirkungen zu ergeben. Die Reinigung des Bodenbelags ist abhängig von der Nutzung der Räumlichkeiten. Für einen typischen Anwendungsfall (z.B. Schulgebäude) wird in dieser Deklaration folgende Empfehlung des Herstellers berücksichtigt:

Einmal jährlich maschinelle Intensivreinigung (Einscheibenmaschine mit geeignetem roten Pad/weicher Bürste und Wassersauger) mit geeignetem Reinigungsmittel; die Belagsoberfläche soll frei von Schmutzrückständen sein.

Um einen gleichmäßigen und verdichteten Pflegefilm zu erhalten, sollte der Belag monatlich mit einem geeigneten Polierpad bzw. einer Polierbürste poliert werden. Zur Unterhaltsreinigung soll mit geeigneten Mikrofaserbezügen und geeigneten Wischpflegemitteln dreimal wöchentlich manuell gereinigt werden.

Weitere Pflegehinweise unter www.nora.com. Es sind keine Reinigungsmittel mit einem pH-Wert über 12 zu verwenden.

Nachfolgende Werte beziehen sich auf die Reinigung über 1 Jahr.

Bezeichnung	Wert	Einheit
Wasserverbrauch (pro m2 und Jahr)	0,016	m³
Hilfsstoff (pro m2 und Jahr)	0,181	kg
Stromverbrauch (pro m2 und Jahr)	0,074	kWh

Referenz Nutzungsdauer

Bezeichnung	Wert	Einheit
Lebensdauer nach Angabe Hersteller	30	а

Ende des Lebenswegs (C1-C4)

Bezeichnung	Wert	Einheit
Zur Energierückgewinnung Abfalltyp	3,36	kg

Wiederverwendungs- Rückgewinnungs- und Recyclingpotential (D) , relevante Szenarioangaben

Das Modul D enthält die Energiegewinne der Verbrennungsprozesse aus A5 (Bodenbelagsverschnitt, Verpackungsabfälle) und C3 (Verbrennung des Bodenbelags). Es wurde eine Abfallverbrennungsanlage mit einem R1-Wert > 0,6 angenommen.

5. LCA: Ergebnisse

Anmerkung:

A2

А3

Α4

entzogen]

Α5

В1

B2

B3

В4

B5

B6

B7

C1

C2

C3

C4

D

EP-freshwater: Dieser Indikator wurde in Übereinstimmung mit dem Charakterisierungsmodell (EUTREND-Modell, Struijs et al., 2009b, wie in ReCiPe umgesetzt; http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml)) als "kg P-Äg." berechnet.

Die Indikatorenwerte für das Modul B2 "Instandhaltung" beziehen sich auf den Zeitraum von 1 Jahr.

	ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; ND = MODUL ODER INDIKATOR NICHT DEKLARIERT; MNR = MODUL NICHT RELEVANT)															
Produ	uktions m	stadiu	Stadiu Errich de Bauw	ntung es		Nutzungsstadium									Gutsch und La außerha Systemo	isten ilb der
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung/Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes Wassereinsatz für das Betreiben des	Gebäudes Rückbau/Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs-	oder Recyclingpotenzial

Х	Х	х х	Х	ND	Х	MNR	MNR	MNR	ND	ND	Х	Х	Х	ND	Х
ERGE	EBNIS	SE DER ÖI	OBIL	ANZ –	UMWE	LTA	USWIR	KUN	GEN na	ch El	1580	4+A2:	1 m²	norapla	n uni
Kernir	ndikator	Einheit	A1	I-A3	A4		A 5		B2	(C1	C2		C3	D
GW	P-total	[kg CO ₂ -Äq.]	9,6	3E+0	1,88E	-1	6,79E-1	;	3,55E-1	4,0	1E-2	8,24E-	3	2,85E+0	-1,09E+0
GWF	P-fossil	[kg CO ₂ -Äq.]	9,6	5E+0	1,87E	-1	6,75E-1	;	3,45E-1	3,9	8E-2	8,18E-	3	2,85E+0	-1,08E+0
GWP-	biogenic	[kg CO ₂ -Äq.]	-1,2	25E-1	0,00E-	Ю	-1,81E-3		1,02E-2	3,3	8E-4	0,00E+	0	1,18E-4	-5,44E-3
GWI	P-luluc	[kg CO ₂ -Äq.]	9,9	9E-2	1,33E	-3	5,23E-3		4,90E-5	5,6	3E-5	6,67E-	5	3,20E-5	-7,53E-4
0	DP	[kg CFC11-Äq	.] 1,6	6E-8	3,46E-	17	8,57E-10	2	,69E-11	9,52	2E-16	1,61E-1	18	2,92E-16	-1,25E-14
<i>F</i>	ΔP	[mol H⁺-Äq.]	4,1	3E-2	1,39E	-3	2,22E-3		1,01E-3	8,2	7E-5	2,46E-	5	2,79E-4	-1,42E-3
EP-fre	shwater	[kg PO₄-Äq.]	4,1	7E-5	4,90E	-7	2,18E-6		1,09E-5	1,0	7E-7	2,42E-	8	7,33E-8	-1,42E-6
EP-r	marine	[kg N-Äq.]	1,0	8E-2	4,52E	4	5,85E-4		2,19E-4	1,9	7E-5	1,11E-	5	7,25E-5	-4,03E-4
EP-te	errestrial	[mol N-Äq.]	1,1	6E-1	5,00E	-3	6,32E-3		1,93E-3	2,0	6E-4	1,25E-	4	1,31E-3	-4,32E-3
PC	OCP	[kg NMVOC-Ä	[.]	1E-2	1,08E	-3	1,78E-3		1,00E-3	5,3	3E-5	2,21E-	5	2,07E-4	-1,13E-3
ΑI	OPE	[kg Sb-Äq.]	1,3	8E-4	1,52E	-8	7,13E-6		6,30E-8	1,1	7E-8	7,23E-1	10	4,47E-9	-1,81E-7
ΑI	OPF	[MJ]	1,9	7E+2	2,45E-	HO	1,04E+1	8	3,05E+0	7,0	7E-1	1,09E-	1	4,67E-1	-1,88E+1
W	/DP	[m³ Welt-Äq.	2,6	1E-1	1,55E	-3	2,84E-2		5,37E-2	6,3	8E-3	7,57E-	5	2,44E-1	-8,35E-2

GWP = Globales Erwärmungspotenzial; ODP = Abbaupotenzial der stratosphärischen Ozonschicht; AP = Versauerungspotenzial von Boden und Wasser; EP = Eutrophierungspotenzial; POCP = Bildungspotenzial für troposphärisches Ozon; ADPE = Potenzial für die Verknappung von abiotischen Ressourcen – nicht fossile Ressourcen (ADP – Stoffe); ADPF = Potenzial für die Verknappung abiotischer Ressourcen – fossile Legende Brennstoffe (ADP – fossile Energieträger); WDP = Wasser-Entzugspotenzial (Benutzer)

ERGEBNISSE DER ÖKOBILANZ – INDIKATOREN ZUR BESCHREIBUNG DES RESSOURCENEINSATZES nach EN 15804+A2: 1 m² noraplan uni

Indikator	Einheit	A1-A3	A4	A5	B2	C1	C2	СЗ	D
PERE	[MJ]	2,16E+1	1,26E-1	2,86E+0	4,56E-1	3,26E-1	6,26E-3	2,06E+0	-4,28E+0
PERM	[MJ]	3,52E+0	0,00E+0	-1,55E+0	0,00E+0	0,00E+0	0,00E+0	-1,97E+0	0,00E+0
PERT	[MJ]	2,51E+1	1,26E-1	1,31E+0	4,56E-1	3,26E-1	6,26E-3	9,31E-2	-4,28E+0
PENRE	[MJ]	1,52E+2	2,46E+0	1,05E+1	8,05E+0	7,07E-1	1,09E-1	4,56E+1	-1,88E+1
PENRM	[MJ]	4,52E+1	0,00E+0	-1,30E-1	0,00E+0	0,00E+0	0,00E+0	-4,51E+1	0,00E+0
PENRT	[MJ]	1,98E+2	2,46E+0	1,04E+1	8,05E+0	7,07E-1	1,09E-1	4,68E-1	-1,88E+1
SM	[kg]	1,70E-1	0,00E+0	8,51E-3	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
RSF	[MJ]	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
NRSF	[MJ]	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
FW	[m³]	3,62E-2	1,45E-4	2,23E-3	1,39E-3	3,17E-4	7,16E-6	5,74E-3	-4,18E-3

PERE = Erneuerbare Primärenergie als Energieträger; PERM = Erneuerbare Primärenergie zur stofflichen Nutzung; PERT = Total erneuerbare Primärenergie; PENRE = Nicht-erneuerbare Primärenergie als Energieträger; PENRM = Nicht-erneuerbare Primärenergie Leaende zur stofflichen Nutzung; PENRT = Total nicht erneuerbare Primärenergie; SM = Einsatz von Sekundärstoffen; RSF = Erneuerbare Sekundärbrennstoffe; NRSF = Nicht-erneuerbare Sekundärbrennstoffe; FW = Nettoeinsatz von Süßwasserressourcen

ERGEBNISSE DER ÖKOBILANZ -ABFALLKATEGORIEN UND OUTPUTFLÜSSE nach EN 15804+A2: 1 m² noraplan uni

Indikator	Einheit	A1-A3	A4	A5	B2	C1	C2	СЗ	D
HWD	[kg]	5,45E-5	1,17E-10	2,81E-6	4,14E-4	1,87E-10	5,75E-12	8,17E-11	-4,23E-9
NHWD	[kg]	3,02E+0	3,70E-4	1,61E-1	1,80E-2	5,02E-4	1,71E-5	8,57E-2	-8,86E-3
RWD	[kg]	1,42E-3	4,27E-6	7,52E-5	2,06E-4	1,05E-4	1,98E-7	2,49E-5	-1,38E-3
CRU	[kg]	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
MFR	[kg]	0,00E+0	0,00E+0	1,00E-1	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
MER	[kg]	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
EEE	[MJ]	0,00E+0	0,00E+0	2,72E-1	0,00E+0	0,00E+0	0,00E+0	4,42E+0	0,00E+0
EET	[MJ]	0,00E+0	0,00E+0	4,87E-1	0,00E+0	0,00E+0	0,00E+0	7,92E+0	0,00E+0

HWD = Gefährlicher Abfall zur Deponie; NHWD = Entsorgter nicht gefährlicher Abfall; RWD = Entsorgter radioaktiver Abfall; CRU = Legende Komponenten für die Wiederverwendung; MFR = Stoffe zum Recycling; MER = Stoffe für die Energierückgewinnung; EEE = Exportierte Energie – thermisch

ERGEBNISSE DER ÖKOBILANZ – zusätzliche Wirkungskategorien nach EN 15804+A2-optional:

	apian an	••							
Indikator	Einheit	A1-A3	A4	A5	B2	C1	C2	С3	D
PM	[Krankheitsf älle]	5,29E-7	1,79E-8	2,84E-8	1,29E-8	6,98E-10	1,44E-10	2,65E-9	-1,22E-8
IRP	[kBq U235- Äq.]	1,76E-1	6,24E-4	9,35E-3	1,30E-1	1,73E-2	2,89E-5	3,89E-3	-2,26E-1
ETP-fw	[CTUe]	1,16E+2	1,82E+0	6,09E+0	2,76E+0	2,97E-1	8,07E-2	2,49E-1	-3,96E+0
HTP-c	[CTUh]	3,18E-9	3,64E-11	1,67E-10	8,93E-11	8,42E-12	1,63E-12	1,74E-11	-1,79E-10
HTP-nc	[CTUh]	1,92E-7	2,08E-9	1,00E-8	1,56E-8	3,18E-10	9,50E-11	6,96E-10	-7,08E-9
SQP	[-]	3,84E+1	7,48E-1	2,03E+0	2,12E-1	2,23E-1	3,74E-2	1,31E-1	-2,93E+0

PM = Potenzielles Auftreten von Krankheiten aufgrund von Feinstaubemissionen; IR = Potenzielle Wirkung durch Exposition des Menschen mit U235; ETP-fw = Potenzielle Toxizitätsvergleichseinheit für Ökosysteme; HTP-c = Potenzielle Toxizitätsvergleichseinheit für den Menschen (kanzerogene Wirkung); HTP-nc = Potenzielle Toxizitätsvergleichseinheit für den Menschen (nicht kanzerogene Wirkung); SQP = Potenzieller Bodenqualitätsindex

Einschränkungshinweis 1 – gilt für den Indikator "Potenzielle Wirkung durch Exposition des Menschen mit U235". Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird eben-falls nicht von diesem Indikator gemessen.

Einschränkungshinweis 2 – gilt für die Indikatoren: "Potenzial für die Verknappung abiotischer Ressourcen - nicht fossile Ressourcen", "Potenzial für die Verknappung abiotischer Ressourcen - fossile Brennstoffe", "Wasser-Entzugspotenzial (Benutzer)", "Potenzielle Toxizitätsvergleichseinheit für Ökosysteme", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - kanzerogene Wirkung", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - nicht kanzerogene Wirkung", "Potenzieller Bodenqualitätsindex".

Die Ergebnisse dieses Umweltwirkungsindikators müssen mit Bedacht angewendet werden, da die Unsicherheiten bei diesen Ergebnissen hoch sind oder da es mit dem Indikator nur begrenzte Erfahrungen gibt.

6. LCA: Interpretation

Die Umweltwirkungen des gesamten Lebenszyklus des nora Bodenbelags werden wesentlich durch die Produktion des Produkts selbst (A1- A3) und das Reinigungsszenario über die gesamte angenommene Referenz-Nutzungsdauer (B2 x RSL) bestimmt. Die Verteilung der Umweltwirkung auf den Gesamtlebenszyklus in die einzelnen Lebenszyklusphasen sieht für alle berücksichtigten Wirkungskategorien sehr ähnlich aus.

Betrachtet man das Modul A1- A3 genauer, zeigt sich, dass die Lieferketten, d.h. die Produktion der Basismaterialien/Rohstoffe (A1) den größten Einfluss auf nahezu alle Wirkungskategorien auf das Gesamtergebnis für A1- A3 hat. Der Produktionsprozess bei nora systems (A3) trägt, bezogen auf die gesamte Fertigungsphase (A1- A3), zur Wirkungskategorie Potential für den abiotischen Abbau fossiler Brennstoffe (ADP fossil) mit ca. 4 % und zum Treibhauspotential (GWP) mit ca. 13 % bei.

Unter den Rohstoffen dominieren die Umweltwirkungen zur Herstellung der Basismaterialien Acrylnitril-Butadien-Kautschuk und Titandioxid.

Für die Umweltwirkung im Modul C3 sind die Treibhausgasemissionen aus dem Verbrennungsprozess bestimmend; andere Umweltwirkungen sind weniger relevant.

Die Nutzungsphase wird über ein professionelles Reinigungsszenario dargestellt. Die Umweltwirkungen beziehen sich somit auf Annahmen, gemäß den Empfehlungen des Herstellers. Die Anwendung von Poliermaschinen und die verwendeten Dateninventare für die Reinigungsmittel während der gesamten Referenz-Nutzungsdauer resultieren in einem Wert für das Treibhauspotential, das mit der Produktionsphase (A1- A3) vergleichbar ist.

Die Berechnungen erfordern die Anwendung von Abschätzungen und Annäherungen für einzelne Rohstoffe. Auch die Verwendung von Dateninventaren aus Datenbanken führen zu gewissen Unsicherheiten der Ergebniswerte. Leider liegen für die spezifische Lieferkette nur wenige spezifische Industriedaten vor. Trotz dieser Unsicherheiten werden die verwendeten Datensätze als gut und für die Berechnung einer Umweltproduktdeklaration als geeignet bewertet.

7. Nachweise

7.1 VOC-Emissionen - Deutschland

Das Produkt wurde bei der zugelassenen Messstelle Eurofins Product Testing A/S, Galten, Dänemark, auf

das Emissionsverhalten geprüft (Prüfnummer: 392-2021-00290403_B_EN) und bei der DIK Prüfgesellschaft mbH, Hannover hinsichtlich flüchtiger N-Nitrosamine (Prüfnummer: 12N0142).

www.blauer-engel.de/uz120

- · emissionsarm
- · geringer Schadstoffgehalt
- in der Wohnumwelt gesundheitlich unbedenklich

Es erfüllt die Anforderungen der Vergaberichtlinie *DE-UZ 120* "Blauer Engel" für elastische Bodenbeläge mit folgenden Emissionsbedingungen:

J	J J	
Verbindung oder Substanz	3. Tag	Endwert (28. Tag)
Summe der organischen Verbindungen im Retentionsbereich C_6 – C_{16} (TVOC)	≤ 1000 µg/m³	≤ 300 µg/m³
Summe der organischen Verbindungen im Retentionsbereich $> C_{16} - C_{22}$ (TSVOC)	-	≤ 30 µg/m³
krebserzeugende Stoffe ²⁷	≤ 10 µg/m³ Summe	≤ 1 µg/m³ je Einzelwert
Summe aller VOC ohne NIK ²⁸	-	≤ 100 µg/m³
R-Wert ²⁹	-	≤ 1
Formaldehyd	-	< 60 µg/m ³ (0.05 ppm)

7.2 VOC-Emissionen - Finnland noraplan® uni Kautschukbeläge erfüllen zudem die Anforderungen der finnischen *M1 Klassifizierung* an Bauprodukte (Prüfung durch Työterveyslaitos, Helsinki, Finnland; Prüfberichtsnummer: 2621).

7.3 VOC -Emissionen - IRK

Zusätzlich werden folgende ausgewählte Innenraumrichtwerte der Innenraumlufthygiene-Kommission (IRK) des Umweltbundesamt eingehalten:

- Styrol ≤ 30 µg/m³
- Naphthalin ≤ 2 µg/m³

8. Literaturhinweise

EN 1081

DIN EN 1081:2021-01, Elastische, Laminat- und modulare mehrschichtige Bodenbeläge - Bestimmung des elektrischen Widerstandes.

EN 1817

DIN EN 1817:2020-07, Elastische Bodenbeläge - Spezifikation für homogene und heterogene ebene Elastomer-Bodenbeläge.

ISO 4649

ISO 4649:2017-09, Elastomere oder thermoplastische Elastomere - Bestimmung des Abriebwiderstandes mit einem Gerät mit rotierender Zylindertrommel.

ISO 9001

ISO 9001:2015-09, Qualitätsmanagementsysteme – Anforderungen.

ISO 10140-3

DIN EN ISO 10140-3:2021-09, Akustik - Messung der Schalldämmung von Bauteilen im Prüfstand - Teil 3: Messung der Trittschalldämmung.

ISO 10874

ISO 10874:2009-11, Elastische, textile und Laminat-Bodenbeläge – Klassifizierung.

EN 13501-1

DIN EN 13501-1:2019-05, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten.

ISO 14001

ISO 14001:2015-09, Umweltmanagementsysteme - Anforderungen mit Anleitung zur Anwendung.

EN 14521:

DIN EN 14521:2004-09, Elastische Bodenbeläge - Spezifikation für ebene Elastomer-Bodenbeläge mit oder ohne Schaumunterschicht mit einer dekorativen Schicht.

ISO 14025

DIN EN ISO 14025:2011-10, Umweltkennzeichnungen und -deklrationen – Typ III Umweltdeklarationen – Grundsätze und Verfahren.

EN 14041

DIN EN 14041:2018-05, Elastische, textile, Laminatund modulare mehrschichtige Bodenbeläge -Wesentliche Merkmale.

ISO 15686

ISO 15686-1:2011-05, Hochbau und Bauwerke -Planung der Lebensdauer - Teil 1: Allgemeine Grundlagen und Rahmenbedingungen.

EN 15804

EN 15804:2019-04+A2:2019, Nachhaltigkeit von Bauwerken – Umweltproduktdeklarationen – Grundregeln für die Produktkategorie Bauprodukte.

DIN 18353

DIN 18353:2019-09, VOB Vergabe- und Vertragsordnung für Bauleistungen - Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) - Estricharbeiten.

DIN 18354

DIN 18354:2019-09, VOB Vergabe- und Vertragsordnung für Bauleistungen - Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) – Gussasphaltarbeiten.

DIN 18365

DIN 18365:2019-09, VOB Vergabe- und Vertragsordnung für Bauleistungen - Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) – Bodenbelagarbeiten.

ISO 22637

ISO 22637:2019-07, Klebstoffe - Prüfung von Klebstoffen für Bodenbeläge - Bestimmung des elektrischen Widerstandes von Klebstoff-Filmen und Verbunden.

ISO 23997

ISO 23997:2007-12: Elastische Bodenbeläge - Bestimmung der flächenbezogenen Masse.

ISO 50001

ISO 50001:2018-08, Energiemanagementsysteme - Anforderungen mit Anleitung zur Anwendung.

DIN 51130

DIN 51130:2014-02, Prüfung von Bodenbelägen -Bestimmung der rutschhemmenden Eigenschaft -Arbeitsräume und Arbeitsbereiche mit Rutschgefahr -Begehungsverfahren - Schiefe Ebene.

DIN 53436-1

DIN 53436-1:2015-12, Erzeugung thermischer Zersetzungsprodukte von Werkstoffen für ihre analytisch-toxikologische Prüfung - Teil 1: Zersetzungsgerät und Bestimmung der Versuchstemperatur.

DIN 53436-2

DIN 53436-2:2015-12, Erzeugung thermischer Zersetzungsprodukte von Werkstoffen für ihre analytisch-toxikologische Prüfung - Teil 2: Verfahren zur thermischen Zersetzung.

Weitere Literatur

AVV-Nummer:

Abfallverszeichnis Verodrnungs-Nummer: 07022: Abfälle aus HZVA von Kunststoffen, synthetischem Gummi und Kunstfasern.

Copyright Titelbild: Elmar Witt, ID: 44749

DE-UZ 113

Vergabekriterien Blauer Engel, DE-UZ 113; Emissionsarme Bodenbelagsklebstoffe und andere Verlegewerkstoffe Version 5; Januar 2019.

DE-UZ 120

Vergabekriterien Blauer Engel, DE-UZ 120; Elastische Fußbodenbeläge; Version 10; Februar 2011.

ECHA-Liste

ECHA Liste der besonders besorgniserregenden Stoffe (substances of very high concern candidate list) veröffentlicht nach Artikle 59(10) der REACH Verordnung (https://echa.europa.eu/candidate-list-table).

ECW code:

European waste catalogue code: 191204: Plastic and Rubber

GEV-EMICODE

EMICODE Emissionsklassifizierung: www.emicode.com; GEV-EMICODE EC1 PLUS, ist die Premiumklasse, die die Grenze des technisch Machbaren beschreibt.

GaBi 10

GaBi 10, 2021.2, Leinfelden-Echterdingen, Sphera Solutions GmbH, 2021 [Zugriff am 10.2021].

GaBi 2021.2 Datenbank

GaBi 2021.2 Datenbank, Leinfelden-Echterdingen, Sphera Solutions GmbH, 2021 [Zugriff am 10.2021].

IBU 2021

Institut Bauen und Umwelt e.V.: Allgemeine EPD-Programmanleitung des Institut Bauen und Umwelt e.V. (IBU). Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com

M1

M1 Emission Classification, Emissionsklassen für Bauprodukte der Building Information Foundation RTS sr.; Helsinki, Finnland (https://cer.rts.fi/en/m1-emission-class-for-building-material/m1-criteria-2/).

PCR Teil A

Produktkategorie-Regeln für gebäudebezogene Produkte und Dienstleistungen. Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Projektbericht. Berlin: Institut Bauen und Umwelt e.V.; Stand 2021-11; Version 1.9.

PCR: Bodenbeläge

Produktkategorie-Regeln für gebäudebezogene Produkte und Dienstleistungen. Teil B: Anforderungen and die EPD für Bodenbeläge, Version 1.2, 02-2018.

TRGS 610

TRGS 610 Ersatzstoffe und Ersatzverfahren für stark lösemittelhaltige Vorstriche und Klebstoffe für den Bodenbereich. Ausgabe Januar 2011; GMBI 2011 Nr. 8 S. 163-165.

Verordnung (EU) Nr. 305/2011

Verordnung (EU) Nr. 305/2011 des Europäischen Parlaments und des Rates vom 9. März 2011 zur Festlegung harmonisierter Bedingungen für die Vermarktung von Bauprodukten und zur Aufhebung der Richtlinie 89/106/EWG des Rates Text von Bedeutung für den EWR.

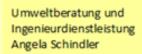
Herausgeber

Deutschland

Institut Bauen und Umwelt e.V. Panoramastr.1 10178 Berlin

+49 (0)30 3087748- 0 Tel Fax +49 (0)30 3087748- 29 info@ibu-epd.com Mail Web www.ibu-epd.com

Programmhalter


Tel +49 (0)30 3087748- 0 Institut Bauen und Umwelt e.V. +49 (0)30 3087748- 29 Panoramastr.1 Fax 10178 Berlin Mail info@ibu-epd.com www.ibu-epd.com Deutschland Web

Ersteller der Ökobilanz

Tel +43 676 849477826 Daxner & Merl GmbH Lindengasse 39/8 Fax +43 42652904 1070 Wien Mail

office@daxner-merl.com Austria Web www.daxner-merl.com

Umweltberatung und

Ingenieurdienstleistung Angela

Schindler Tüfinger Str. 12 88682 Salem Germany

Tel 07553 919 9456 Fax 07553 918 8204

Mail umwelt@wegwarte-salem.de

Web www.wegwartesalem.de/umweltberatung/

Inhaber der Deklaration

+49 6201 80 6040 nora systems GmbH Tel Höhnerweg 2-4 Fax +49 6201 88 3019 69469 Weinheim info-de@nora.com Mail Germany Web www.nora.com